第1章 绪论
1.1 引言
1.2 人工神经网络概述
1.2.1 人工神经元
1.2.2 人工神经网络分类
1.2.3 前向人工神经网络
1.2.4 竞争型人工神经网络
1.2.5 递归人工神经网络
1.2.6 量子比特神经网络
1.3 人工神经网络适用于信号处理
1.3.1 数字信号处理问题概述
1.3.2 人工神经网络适用于数字信号处理
1.3.3 应用人工神经网络解决信号处理问题示例
1.4 ANN解决信号处理问题的一般思路
习题
第2章 基于BP网络的信号处理
2.1 引言
2.2 BP学习算法
2.2.1 输出层神经元权值确定
2.2.2 隐含层神经元权值确定
2.2.3 权值修正过程
2.2.4 BP学习算法描述
2.3 BP学习算法的局限性及改进方法
2.3.1 BP学习算法的局限性
2.3.2 BP学习算法的改进方法
2.4 构建BP网络的关键问题
2.5 BP网络的MATLAB实现
2.6 基于BP网络的英文字母识别
2.6.1 英文字母特征提取
2.6.2 网络结构确定
2.6.3 网络训练
2.6.4 网络构建流程
2.6.5 字母识别性能分析
习题
第3章 基于RBF网络的信号处理
3.1 函数的内插理论
3.1.1 近似问题的定义
3.1.2 函数的内插
3.2 径向基神经元
3.3 高斯RBF网络
3.3.1 高斯RBF网络结构
3.3.2 网络学习方法
3.3.3 RBF网络结构确定方法
3.4 概率RBF网络
3.4.1 贝叶斯决策分类方法简介
3.4.2 概率RBF网络结构
3.4.3 基于EM算法的概率RBF网络的学习
3.5 RBF网络的MATLAB实现
3.5.1RBF网络创建函数
3.5.2 RBF网络传递函数和转换函数
3.6 RBF网络应用实例
3.6.1 基于RBF网络的插值技术
3.6.2 基于RBF网络的浅滩演变预测
习题
第4章 基于SOFM网络的信号处理
4.1 SOFM网络结构
4.1.1SOFM网络基本特点
4.1.2 网络构成
4.2 SOFM网络学习算法
4.2.1 两阶段权值调整
……
第5章 神经动力学基本原理及Hopfield网络
第6章 量子比特神经网络
第7章 结束语
参考文献