第1章 绪论
1.1 关于开关电源
1.2 开关电源的基本构成
1.3 开关电源的分类
1.4 开关电源的应用
1.5 开关电源的发展史
1.6 开关电源技术的发展趋势
第2章 开关电源中常用的电力电子器件与驱动
2.1 电力二极管
2.1.1 PN结与电力二极管的工作原理
2.1.2 二极管的基本特性及主要参数
2.1.3 二极管的主要类型
2.2 电力MOSFET
2.2.1 结构和工作原理
2.2.2 主要参数
2.3 绝缘栅双极型晶体管(IGBT)
2.3.1 结构与工作原理
2.3.2 主要参数
2.4 驱动电路
2.4.1 对驱动电路的要求
2.4.2 集成电路直接驱动
2.4.3 加入驱动功率放大级驱动
2.4.4 用变压器耦合驱动
2.4.5 光耦合器驱动器
第3章 非隔离型DC-DC变换器
3.1 降压式(Buck)变换器
3.1.1 主电路拓扑和控制方式
3.1.2 电感电流连续时Buck变换器的工作原理和基本关系
3.1.3 电感电流断续时Buck变换器的工作原理和基本关系
3.1.4 电感电流临界连续的边界
3.2 升压式(Boost)变换器
3.2.1 主电路拓扑和控制方式
3.2.2 电感电流连续时Boost变换器的工作原理和基本关系
3.2.3 电感电流断续时Boost变换器的工作原理和基本关系
3.2.4 电感电流临界连续的边界
3.3 升降压(Buck/Boost)变换器
3.3.1 主电路拓扑和控制方式
3.3.2 电感电流连续时Buck/Boost变换器的工作原理和基本关系
3.3.3 电感电流断续时Buck/Boost变换器的工作原理和基本关系
3.3.4 电感电流临界连续的边界
3.4 Cuk变换器
3.4.1 主电路拓扑和控制方式
3.4.2 电流连续时Cuk变换器的工作原理和基本关系
3.4.3 电流断续时Cuk变换器的工作原理和基本关系
3.4.4 两电感有耦合的Cuk变换器
3.5 Zeta变换器
3.5.1 主电路拓扑和控制方式
3.5.2 电流连续时Zeta变换器的工作原理和基本关系
3.5.3 电流断续时Zeta变换器的工作原理和基本关系
3.6 Sepic变换器
3.6.1 主电路拓扑和控制方式
3.6.2 电流连续时Sepic变换器的工作原理和基本关系
第4章 隔离型DC-DC变换器
4.1 正激式变换器
4.1.1 主电路组成和控制方式
4.1.2 电流连续时正激变换器的工作原理和基本关系
4.2 反激变换器
4.2.1 主电路组成和控制方式
4.2.2 电流连续时反激变换器的工作原理和基本关系
4.2.3 电流断续时反激变换器的工作原理和基本关系
4.3 推挽(Push-Pull)变换器
4.3.1 推挽式逆变器
4.3.2 推挽变换器
4.3.3 推挽变换器的铁芯偏磁
4.4 半桥(Half-Bridge)变换器
4.4.1 半桥逆变器
4.4.2 半桥DC-DC变换器
4.4.3 考虑漏感时半桥变换器的工作原理
4.5 全桥(Full-Bridge)变换器
……
第5章 有源功率因数校正技术
第6章 软开关与同步整流技术
第7章 开关电源的控制电路
第8章 高频开关整流器的保护电路
第9章 开关电源的电磁兼容技术
第10章 开关电源中的磁性元件
第11章 反馈环路的稳定
第12章 开关电源设计实例
参考文献