1 Runge-Kutta (-Nystrom) Methods for Oscillatory Differentia lEquations
1.1 RK Methods, Rooted Trees, B-Series and Order Conditions
1.2 RKN Methods, Nystrom Trees and Order Conditions
1.2.1 Formulation ofthe Scheme
1.2.2 NystromTrees and Order Conditions
1.2.3 The SpecialCasein Absence ofthe Derivative
1.3 Dispersion and Dissipation ofRK(N) Methods
1.3.1 RKMethods
1.3.2 RKNMethods
1.4 Symplectic Methods for Hamiltonian Systems
1.5 Comments on Structure-Preserving Algorithms for Oscillatory Problems
References
2 ARKNMethods
2.1 TraditionalARKNMethods
2.1.1 Formulationofthe Scheme
2.1.2 OrderConditions
2.2 Symplectic ARKN Methods
2.2.1 SymplecticityConditionsforARKNIntegrators
2.2.2 Existence ofSymplectic ARKNIntegrators
2.2.3 Phase and Stability Properties ofMethod SARKNls2
2.2.4 Nonexistence ofSymmetric ARKN Methods
2.2.5 NumericalExperiments
2.3 MultidimensionaIARKN Methods
2.3.1 Formulation ofthe Scheme
2.3.2 OrderConditions
2.3.3 PracticalMultidimensionalARKN Methods
References
3 ERKNMethods
3.1 ERKNMethods
3.1.1 FormulationofMultidimensionalERKNMethods
3.1.2 SpecialExtended Nystrom Tree Theory
3.1.3 OrderConditions
3.2 EFRKN Methods and ERKN Methods
3.2.1 One-DimensionaICase
3.2.2 MultidimensionalCase
3.3 ERKN Methods for Second-Order Systems with Variable PrincipaIFrequencyMatrix
3.3. Analysis Through an Equivalent System
3.3.2 Towards ERKNMethods
3.3.3 Numericallllustrations
References
4 Symplectic and Symmetric MultidimensionaIERKN Methods
4.1 Symplecticity and Symmetry Conditions for Multidimensional ERKNlntegrators
4.1.1 Symmetry Conditions
4.1.2 SymplecticityConditions
4.2 Construction ofExplicit SSMERKNIntegrators
4.2.1 Two Two-Stage SSMERKNlntegrators of Order Two
4.2.2 AThree-StageSSMERKNIntegratorofOrderFour
4.2.3 Stability and Phase Properties ofSSMERKNIntegrators
4.3 NumericalExperiments
4.4 ERKN Methods for Long-Term Integration of Orbital Problems
4.5 Symplectic ERKN Methods for Time-Dependent Second-Order Systems
4.5.1 Equivalent Extended Autonomous Systems for Non- autonomous Systems
4.5.2 Symplectic ERKN Methods for Time-Dependen tHamiltonianSystems
4.6 ConcludingRemarks
References
5 Two-Step MultidimensionaIERKN Methods
5.1 The ScheifeleTwo-Step Methods
5.2 FormulationofTSERKNMethods
5.3 OrderConditions
5.3.1 B-SeriesonSENT
5.3.2 One-StepFormulation
5.3.3 OrderConditions
5.4 ConstructionofExplicitTSERKNMethods
5.4.1 A Method with Two Function Evaluations per Step
5.4.2 Methods with Three Function Evaluations per Step
5.5 Stability and Phase Properties ofthe TSERKN Methods
……
6 Adapted Falkner-Type Methods
7 Energy-Preserving ERKN Methods
8 Effective Methods for Highly Oscillatory Second-Order Nonlinear DifferentiaIEquations
9 Extended Leap-Frog Methods for Hanultonian Wave Equations
Appendix First and Second Symposiums on Structure-Preserving Algorithms for Differential Equations, August 2011, June 2012, Nanjing
Index