第一章 绪论
1-1 弹性力学的任务 研究对象 范围及方法
1-2 弹性力学的基本假设
第二章 弹性力学问题的建立
2-1 应力和一点的应力状态
2-2 和坐标轴倾斜的微分面上的应力
2-3 平衡微分方程静力边界条件
2-4 位移分量和应变分量几何方程
2-5 应变协调方程
2-6 广义虎克定律
2-7 弹性力学的基本方程及三类边值问题
2-8 解决问题的两条途径
2-9 解的唯一性定律逆解法和半逆解法
2-10 圆柱体的扭转圣维南原理
习题
第三章 弹性力学平面问题
3-1 平面应变问题和平面应力问题
3-2 化平面问题为双调和方程的边值问题
3-3 代数多项式解答
3-4 若干典型实例
3-5 平面问题的极坐标方程
3-6 平面轴对称应力问题
3-7 具有小圆孔的平板均匀拉伸
3-8 楔形体问题
3-9 半平面问题
习题
第四章 弹性力学空间问题
4-1 一点的应力状态和应变状态分析
4-2 柱形杆的扭转
4-3 实例
4-4 薄壁杆的扭转
4-5 轴对称情况下基本方程的柱坐标形式
4-6 借助于拉甫(Love)位移函数求解空间轴对称问题
习题
第五章 薄板的小挠度弯曲
5-1 一般概念和基本假设
5-2 基本关系式和基本方程的建立
5-3 矩形薄板的边界条件
5-4 简支边矩形薄板的纳维解法
5-5 矩形薄板的莱维解法
5-6 圆形薄板的弯曲
5-7 圆形薄板的轴对称弯曲
习题
第六章 弹性力学问题的变分解法
6-1 弹性体的应变能
6-2 位移变分方程最小势能原理
6-3 基于最小势能原理的近似计算方法
6-4 瑞利-李兹法和伽辽金法的应用
6-5 应力变分方程最小余能原理
6-6 利用应力变分原理的近似解法
习题
第七章 弹性力学平面问题有限单元法
7-1 基本量及其关系的矩阵表示
7-2 有限单元法解题思路
7-3 位移模式与解答的收敛准则
7-4 单元分析
7-5 结构整体分析
7-6 解题的基本步骤及若干问题的说明
7-7 采用常应变三角形单元的计算实例
7-8 矩形双线性单元及应用
7-9 三角形单元的面积坐标
7-10 六结点三角形单元及应用
7-11 等参数单元的概念
7-12 四结点等参数单元
7-13 八结点等参数单元
7-14 等参数单元的讨论及高斯积分法
习题
第八章 弹性力学空间问题有限单元法
8-1 空间问题有限单元法概述
8-2 四面体常应变单元位移模式
8-3 单元分析
8-4 以四面体为基础的组合单元
8-5 计算实例
8-6 八结点六面体等参数单元
8-7 二十结点空间等参数单元
8-8 空间组合单元及等参数单元算例单元比较与选择
习题
第九章 薄板弯曲问题的有限单元法
9-1 概述
9-2 矩形薄板单元的位移模式解答的收敛性
9-3 矩形薄板单元的单元分析
9-4 边界条件及计算实例
9-5 三角形薄板单元简介位移模式
9-6 三角形薄板单元的单元分析计算实例
习题
第十章 有限差分法
10-1 差分公式的导出
10-2 梁弯曲问题的差分解
10-3 平面问题的差分解
10-4 平面问题的差分解举例
10-5 矩形薄板弯曲问题的差分解
10-6 矩形薄板弯曲问题的差分解举例
习题
第十一章 加权残值法
11-1 加权残值法的基本概念
11-2 加权残值法的基本方法
11-3 用加权残值法解梁弯曲问题举例
11-4 用加权残值法解薄板弯曲问题举例
11-5 离散型加权残值法
习题
第十二章 边界单元法
12-1 弹性力学基本公式的下标记法
12-2 弹性力学边界积分方程
12-3 弹性力学边界单元法
12-4 弹性力学平面问题边界单元法
12-5 边界单元法应用例题
习题
部分习题参考答案
主要参考文献