Introduction
Chapter XXV. Lagrangian Distributions and Fourier
Integral
Operators
Summary
25.1. Lagrangian Distributions
25.2. The Calculus of Fourier Integral Operators
25.3. Special Cases of the Calculus, and L2 Continuity
25.4. Distributions Associated with Positive Lagrangian Ideals
25.5. Fourier Integral Operators with Complex Phase
Notes
Chapter XXVI. Pseudo-Differential Operators of Principal Type
Summary
26.1. Operators with Real Principal Symbols
26.2. The Complex Involutive Case
26.3. The Symplectic Case
26.4. Solvability and Condition (ψ)
26.5. Geometrical Aspects of Condition (P)
26.6. The Singularities in N11
26.7. Degenerate Cauchy-Riemann Operators
26.8. The Nirenberg-Treves Estimate
26.9.The Nrenberg-Treves Estimate
26.10.The Singularites on One Dimensional Bicharacterstics
26.11.A Semi-Global Existence Theorem
Chapter XXVII.Subelliptic Operators
Summary
27.1.Defintions and Main Results
27.2.The Taylor Expansion of the Symbol
27.3.Subelliptic Operators Satsfying(P)
27.4.Local Properties of the Symbol
Chapter XXVIIII.Uniqueess for the Cauchy problem
Chapter XXIX.Spectral Asymptotics
Chapter XXX.Long Range Scattering Theory
Bibliography
Index
Index of Notation