解析数论导论

目 录内容简介
Historical Introduction
Chapter 1
The Fundamental Theorem of Arithmetic
1.1 Introduction
1.2 Divisibility
1.3 Greatest common divisor
1.4 Prime numbers
1.5 The fundamental theorem of arithmetic
1.6 The series of reciprocals of the primes
1.7 The Euclidean algorithm
1.8 The greatest common divisor of more than two, numbers
Exercises for Chapter 1
Chapter 2
Arithmetical Functions and Dirichlet Multiplication
2.1 Introduction
2.2 The M6bius function (n)
2.3 The Euler totient function (n)
2.4 A relation connecting and u
2.5 A product formula for (n)
2.6 The Dirichlet product of arithmetical functions
2.7 Dirichlet inverses and the M6bius inversion formula
2.8 The Mangoldt function A(n)
2.9 Muitiplicative functions
2.10 Multiplicative functions and Dirichlet multiplication
2.11 The inverse of a completely multiplicative function
2.12 Liouville's function)
2.13 The divisor functions a,(n)
2.14 Generalized convolutions
2.15 Formal power series
2.16 The Bell series of an arithmetical function
2.17 Bell series and Dirichlet multiplication
2.18 Derivatives of arithmetical functions
2.19 The Selberg identity
Exercises for Chapter 2
Chapter 3
Averages of Arithmetical Functions
3.1 Introduction
3.2 The big oh notation. Asymptotic equality of functions
3.3 Euler's summation formula
3.4 Some elementary asymptotic formulas
3.5 The average order of din)
3.6 The average order of the divisor functions a,(n)
3.7 The average order of ~0(n)
3.8 An application to the distribution of lattice points visible from the origin
3.9 The average order of/4n) and of A(n)
3.10 The partial sums ofa Dirichlet product
3.11 Applications to pin) and A(n)
3.12 Another identity for the partial gums of a Dirichlet product
Exercises for Chapter 3
Chapter 4
Some Elementary Theorems on the Distribution of Prime
Numbers
4.1 Introduction
4.2 Chebyshev's functions (x) and (x)
4.3 Relations connecting/x) and n(x)
4.4 Some equivalent forms of the prime number theorem
4.5 Inequalities for (n) and p,
4.6 Shapiro's Tauberian theorem
4.7 Applications of Shapiro's theorem
4.8 An asymptotic formula for the partial sums, (I/p)
4.9 The partial sums of the M6bius function 91
4.10 Brief sketch of an elementary proof of the prime number theorem
4.11 Selbcrg's asymptotic formula
Exercises for Chapter 4
Chapter 5
Congruences
5.1 Definition and basic properties of congruences
5.2 Residue classes and complete residue systems
5.3 Linear congruences
Chapter 6
Finite Abelian Groups and Their Characters
Chapter 7
Dirichlet's Theorem on Primes in Arithmetic Progressions
Chapter 8
Periodic Arithmetical Functions and Gauss Sums
Chapter 9
Quadratic Residues and the Quadratic Reciprocity Law
Chapter 10
Primitive Roots
Chapter 11
Dirichlet Series and Euler Products
Chapter 12
The Functions (s) and L(s,x)
Chapter 13
Analytic Proof of the Prime Number Theorem
Chapter 1
The Fundamental Theorem of Arithmetic
1.1 Introduction
1.2 Divisibility
1.3 Greatest common divisor
1.4 Prime numbers
1.5 The fundamental theorem of arithmetic
1.6 The series of reciprocals of the primes
1.7 The Euclidean algorithm
1.8 The greatest common divisor of more than two, numbers
Exercises for Chapter 1
Chapter 2
Arithmetical Functions and Dirichlet Multiplication
2.1 Introduction
2.2 The M6bius function (n)
2.3 The Euler totient function (n)
2.4 A relation connecting and u
2.5 A product formula for (n)
2.6 The Dirichlet product of arithmetical functions
2.7 Dirichlet inverses and the M6bius inversion formula
2.8 The Mangoldt function A(n)
2.9 Muitiplicative functions
2.10 Multiplicative functions and Dirichlet multiplication
2.11 The inverse of a completely multiplicative function
2.12 Liouville's function)
2.13 The divisor functions a,(n)
2.14 Generalized convolutions
2.15 Formal power series
2.16 The Bell series of an arithmetical function
2.17 Bell series and Dirichlet multiplication
2.18 Derivatives of arithmetical functions
2.19 The Selberg identity
Exercises for Chapter 2
Chapter 3
Averages of Arithmetical Functions
3.1 Introduction
3.2 The big oh notation. Asymptotic equality of functions
3.3 Euler's summation formula
3.4 Some elementary asymptotic formulas
3.5 The average order of din)
3.6 The average order of the divisor functions a,(n)
3.7 The average order of ~0(n)
3.8 An application to the distribution of lattice points visible from the origin
3.9 The average order of/4n) and of A(n)
3.10 The partial sums ofa Dirichlet product
3.11 Applications to pin) and A(n)
3.12 Another identity for the partial gums of a Dirichlet product
Exercises for Chapter 3
Chapter 4
Some Elementary Theorems on the Distribution of Prime
Numbers
4.1 Introduction
4.2 Chebyshev's functions (x) and (x)
4.3 Relations connecting/x) and n(x)
4.4 Some equivalent forms of the prime number theorem
4.5 Inequalities for (n) and p,
4.6 Shapiro's Tauberian theorem
4.7 Applications of Shapiro's theorem
4.8 An asymptotic formula for the partial sums, (I/p)
4.9 The partial sums of the M6bius function 91
4.10 Brief sketch of an elementary proof of the prime number theorem
4.11 Selbcrg's asymptotic formula
Exercises for Chapter 4
Chapter 5
Congruences
5.1 Definition and basic properties of congruences
5.2 Residue classes and complete residue systems
5.3 Linear congruences
Chapter 6
Finite Abelian Groups and Their Characters
Chapter 7
Dirichlet's Theorem on Primes in Arithmetic Progressions
Chapter 8
Periodic Arithmetical Functions and Gauss Sums
Chapter 9
Quadratic Residues and the Quadratic Reciprocity Law
Chapter 10
Primitive Roots
Chapter 11
Dirichlet Series and Euler Products
Chapter 12
The Functions (s) and L(s,x)
Chapter 13
Analytic Proof of the Prime Number Theorem
目 录内容简介
《心灵能量》一书,以心为起点,将七情、五行性格与心肝脾肺肾五大系统疾病的对应关系作了深入细致地分析,以生活化的案例向我们证明了这样一个道理:养生不只是养身,更重要的是养心。心生百病,同样心也能治百病。心是好的药。
总之,这是一本放大心灵能量,教会你心灵治愈,重拾生命真谛的心灵励志书。
总之,这是一本放大心灵能量,教会你心灵治愈,重拾生命真谛的心灵励志书。
比价列表
公众号、微信群

微信公众号

实时获取购书优惠