国外数学名著系列:数值数学(影印版)

目 录内容简介
ContentsPreface iiiⅠ Getting Started 11. Foundations of Matrix Analysis 31.1 Vector Spaces 31.3 0perations with Matrices 71.3.1 Inverse of a Matrix 81.3.2 Matrices and Linear Mappings 91.3.3 0perations with Block-Partitioned Matrices 91.4 Trace and Determinant of a Matrix 101.5 Rank and Kernel of a Matrix 111.6 Special Matrices 121.6.1 Block Diagonal Matrices 121.6.2 Trapezoidal and Triangular Matrices 131.6.3 Banded Matrices 131.7 Eigenvalues and Eigenvectors 141.8 Similarity Transformations 161.9 The Singular Value Decomposition (SVD) 181.10 Scalar Product and Norms in Vector Spaces 191.11 Matrix Norms 231.11.1 Relation between Norms and the Spectral Radius of a Matrix 271.11.2 Sequences and Series of Matrices 281.12 Positive Definite, Diagonally Dominant and M-matrices 291.13 Exercises 322. Principles of Numerical Mathematics 352.1 Well-posedness and Condition Number of a Problem 352.2 Stability of Numerical Methods 392.2.1 Relations between Stability and Convergence 422.3 A priori and a posteriori Analysis 432.4 Sources of Error in Computational Models 452.5 Machine Representation of Numbers 472.5.1 The Positional System 472.5.2 The Floating-point Number System 482.5.3 Distribution of Floating-point Numbers 512.5.4 IEC/IEEE Arithmetic 512.5.5 Rounding of a Real Number in its Machine Representation 522.5.6 Machine Floating-point Operations 542.6 Exercises 56II Numerical Linear Algebra 593. Direct Methods for the Solution of Linear Systems613.1 Stability Analysis of Linear Systems 623.1.1 The Condition Number of a Matrix 623.1.2 Forward a priori Analysis 643.1.3 Backward a priori Analysis 673.1.4 A posteriori Analysis 683.2 Solution of Triangular Systems 693.2.1 Implementation of Substitution Methods 693.2.2 Rounding Error Analysis 713.2.3 Inverse of a Triangular Matrix 713.3 The Gaussian Elimination Method (GEM) and LU Factorization 723.3.1 GEM as a Factorization Method 763.3.2 The Effect of Rounding Errors 803.3.3 Implementation of LU Factorization 813.3.4 Compact Forms of Factorization 823.4 0ther Types of Factorization 833.4.1 LDMT Factorization 833.4.2 Symmetric and Positive Definite Matrices: The Cholesky Factorization 843.4.3 Rectangular Matrices: The QR Factorization 863.6 Computing the Inverse of a Matrix 933.7 Banded Systems 943.7.1 Tridiagonal Matrices 953.7.2 Implementation Issues 963.8 Block Systems 973.8.1 Block LU Factorization 983.8.2 Inverse of a Block-partitioned Matrix 983.8.3 Block Tridiagonal Systems 993.9 Sparse Matrices 1013.9.1 The Cuthill-McKee Algorithm 1023.9.2 Decomposition into Substructures 1043.9.3 Nested Dissection 1073.10 Accuracy of the Solution Achieved Using GEM 1073.11 An Approximate Computation of K(A) 1103.12 Improving the Accuracy of GEM 1133.12.1 Scaling 1143.12.2 Iterative Refinement 1153.13 Undetermined Systems 1163.14 Applications 1193.14.1 Nodal Analysis of a Structured Frame 1193.14.2 Regularization of a Triangular Grid 1223.15 Exercises 1254. Iterative Methods for Solving Linear Systems 1274.1 0n the Convergence of lterative Methods 1274.2 Linear Iterative Methods 1304.2.1 Jacobi, Gauss-Seidel and Relaxation Methods 1314.2.2 Convergence Results for Jacobi and Gauss-SeidelMethods 1334.2.3 Convergence Results for the Relaxation Method 1354.2.4 A priori Forward Analysis 1364.2.5 Block Matrices 1374.2.6 Symmetric Form of the Gauss-Seidel and SOR Methods 1374.2.7 Implementation Issues 1394.3 Stationary and Nonstationary Iterative Methods 1404.3.1 Convergence Analysis of the Richardson Method 1414.3.2 Preconditioning Matrices 1434.3.3 The Gradient Method 1504.3.4 The Conjugate Gradient Method 1554.3.5 The Preconditioned Conjugate Gradient Method 1604.3.6 The Alternating-Direction Method 1624.4 Methods Based on Krylov Subspace Iterations 1634.4.1 The Arnoldi Method for Linear Systems 1664.4.2 The GMRES Method 1694.4.3 The Lanczos Method for Symmetric Systems 1714.5 The Lanczos Method for Unsymmetric Systems 1724.6 Stopping Criteria 1754.6.1 A Stopping Test Based on the Increment 1764.6.2 A Stopping Test Based on the Residual 1784.7 Applications 1784.7.1 Analysis of an Electric Network 1784.7.2 Finite Difference Analysis of Beam Bending 1814.8 Exercises 1835. Approximation of Eigenvalues and Eigenvectors 1875.1 Geometrical Location of the Eigenvalues 1875.2 Stability and Conditioning Analysis 1905.2.1 A priori Estimates 1905.2.2 A posteriori Estimates 1945.3 The Power Method 1965.3.1 Approximation of the Eigenvalue of Largest Module 1965.3.2 Inverse Iteration 1995.3.3 Implementation Issues 2005.4 The QR
目 录内容简介
数值数学是数学的一个分支,它提出、发展、分析并应用科学计算中的方法于若干领域,如分析学、线性代数、几何学、逼近论、函数方程、优化问题和微分方程等等。而其他领域,如物理学、自然和生物科学、工程、经济、金融科学也经常提出问题,而问题的解决同样需要科学计算。 因此可以说,数值数学是现代应用科学中具有很强相关性的不同学科的一个交叉学科,是这些学科中定性和定量分析的重要工具。 写作《数值数学》的目的之一,是给出数值方法的数学基础,分析其基本的理论性质(如稳定性、精度、计算复杂性),应用MATLAB这一界面友好并被广泛接受的软件,通过例子和反例说明其特征和优缺点。讨论每一类问题时,都评述适合的算法,进行理论分析,并利用一个MATLAB程序验证理论结果。《数值数学》每一章都包含例子、练习,并运用所讨论的理论解决现实生活中的问题。
比价列表
公众号、微信群

微信公众号

实时获取购书优惠