1.MetricSpacesandtheirGroups
1.1MetricSpaces
1.2Isometries
1.3IsometriesoftheRealLine
1.4MattersArising
1.5SymmetryGroups
2.IsometriesofthePlane
2.1CongruentTriangles
2.2IsometriesofDifferentTypes
2.3TheNormalFormTheorem
2.4ConjugationofIsometries
3.SomeBasicGroupTheory
3.1Groups
3.2Subgroups
3.3FactorGroups
3.4SemidirectProducts
4.ProductsofReflections
4.1TheProductofTwoReflections
4.2ThreeReflections
4.3FourorMore
5.GeneratorsandRelations
5.1Examples
5.2SemidirectProductsAgain
5.3ChangeofPresentation
5.4TriangleGroups
5.5AbelianGroups
6.DiscreteSubgroupsoftheEuclideanGroup
6.1LeonardosTheorem
6.2ATrichotomy
6.3FriezesandTheirGroups
6.4TheClassification
7.PlaneCrystallographicGroups:OPCase
7.1TheCrystallographicRestriction
7.2TheParametern
7.3TheChoiceofb
7.4Conclusion
8.PlaneCrystallographicGroups:ORCase
8.1AUsefulDichotomy
8.2TheCasen=1
8.3TheCasen=2
8.4TheCasen=4
8.5TheCasen=3
8.6TheCasen-6
9.TessellationsofthePlane
9.1RegularTessellations
9.2Descendantsof(4,4)
9.3Bricks
9.4SplitBricks
9.5Descendantsof(3,6)
10.TessellationsoftheSphere
10.1SphericalGeometry
10.2TheSphericalExcess
10.3TessellationsoftheSphere
10.4ThePlatonicSolids
10.5SymmetryGroups
11.TriangleGroups
11.1TheEuclideanCase
11.2TheEllipticCase
11.3TheHyperbolicCase
11.4CoxeterGroups
12.RegularPolytopes
12.1TheStandardExamples
12.2TheExceptionalTypesinDimensionFour
12.3ThreeConceptsandaTheorem
12.4SchlaflisTheorem
Solutions
GuidetotheLiterature
Bibliography
IndexofNotation
Index