凝聚态物理学的量子方法

目 录内容简介
Preface
Chapter 1 Semiclassical introduction
1.1 Elementary excitations
1.2 Phonons
1.3 Solitons
1.4 Magnons
1.5 Plasmons
1.6 Electron quasiparticles
1.7 The electron-phonon interaction
1.8 The quantum Hall effect
Chapter 2 Second quantization and the electron gas
2.1 A single electron
2.2 Occupation numbers
2.3 Second quantization for fermions
2.4 The electron gas and the Hartree-Fock approximation
2.5 Perturbation theory
2.6 The density operator
2.7 The random phase approximation and screening
2.8 Spin waves in the electron gas
Chapter 3 Boson systems
3.1 Second quantization for bosons
3.2 The harmonic oscillator
3.3 Quantum statistics at finite temperatures
3.4 Bogoliubovs theory of helium
3.5 Phonons in one dimension
3.6 Phonons in three dimensions
3.7 Acoustic and optical modes
3.8 Densities of states and the Debye model
3.9 Phonon interactions
3.10 Magnetic moments and spin
3.11 Magnons
Chapter 4 One-electron theory
4.1 Bloch electrons
4.2 Metals, insulators, and semiconductors
4.3 Nearly free electrons
4.4 Core states and the pseudopotential
4.5 Exact calculations, relativistic effects, and the structure factor
4.6 Dynamics of Bloch electrons
4.7 Scattering by impurities
4.8 Quasicrystals and glasses
Chapter 5 Density functional theory
5.1 The Hohenberg-Kohn theorem
5.2 The Kohn-Sham formulation
5.3 The local density approximation
5.4 Electronic structure calculations
5.5 The Generalized Gradient Approximation
5.6 More acronyms: TDDFT, CDFT, and EDFT
Chapter 6 Electron-phonon interactions
6.1 The Frohlich Hamiltonian
6.2 Phonon frequencies and the Kohn anomaly
6.3 The Peierls transition
6.4 Polarons and mass enhancement
6.5 The attractive interaction between electrons
6.6 The Nakajima Hamiltonian
Chapter 7 Superconductivity
7.1 The superconducting state
7.2 The BCS Hamiltonian
7.3 The Bogoliubov-Valatin transformation
7.4 The ground-state wave function and the energy gap
7.5 The transition temperature
7.6 Ultrasonic attenuation
7.7 The Meissner effect
7.8 Tunneling experiments
7.9 Flux quantization and the Josephson effect
7.10 The Ginzburg-Landau equations
7.11 High-temperature superconductivity
Chapter 8 Semiclassical theory of conductivity in metals
8.1 The Boltzmann equation
8.2 Calculating the conductivity of metals
8.3 Effects in magnetic fields
8.4 Inelastic scattering and the temperature dependence of resistivity
8.5 Thermal conductivity in metals
8.6 Thermoelectric effects
Chapter 9 Mesoscopic physics
9.1 Conductance quantization in quantum point contacts
9.2 Multi-terminal devices: the Landauer-Buttiker formalism
9.3 Noise in two-terminal systems
9.4 Weak localization
9.5 Coulomb blockade
Chapter 10 The quantum Hall effect
10.1 Quantized resistance and dissipationless transport
10.2 Two-dimensional electron gas and the integer quantum Hall effect
10.3 Edge states
10.4 The fractional quantum Hall effect
10.5 Quasiparticle excitations from the Laughlin state
10.6 Collective excitations above the Laughlin state
10.7 Spins
10.8 Composite fermions
Chapter 11 The Kondo effect and heavy fermions
11.1 Metals and magnetic impurities
11.2 The resistance minimum and the Kondo effect
11.3 Low-temperature limit of the Kondo problem
11.4 Heavy fermions
Bibliography
Index
Chapter 1 Semiclassical introduction
1.1 Elementary excitations
1.2 Phonons
1.3 Solitons
1.4 Magnons
1.5 Plasmons
1.6 Electron quasiparticles
1.7 The electron-phonon interaction
1.8 The quantum Hall effect
Chapter 2 Second quantization and the electron gas
2.1 A single electron
2.2 Occupation numbers
2.3 Second quantization for fermions
2.4 The electron gas and the Hartree-Fock approximation
2.5 Perturbation theory
2.6 The density operator
2.7 The random phase approximation and screening
2.8 Spin waves in the electron gas
Chapter 3 Boson systems
3.1 Second quantization for bosons
3.2 The harmonic oscillator
3.3 Quantum statistics at finite temperatures
3.4 Bogoliubovs theory of helium
3.5 Phonons in one dimension
3.6 Phonons in three dimensions
3.7 Acoustic and optical modes
3.8 Densities of states and the Debye model
3.9 Phonon interactions
3.10 Magnetic moments and spin
3.11 Magnons
Chapter 4 One-electron theory
4.1 Bloch electrons
4.2 Metals, insulators, and semiconductors
4.3 Nearly free electrons
4.4 Core states and the pseudopotential
4.5 Exact calculations, relativistic effects, and the structure factor
4.6 Dynamics of Bloch electrons
4.7 Scattering by impurities
4.8 Quasicrystals and glasses
Chapter 5 Density functional theory
5.1 The Hohenberg-Kohn theorem
5.2 The Kohn-Sham formulation
5.3 The local density approximation
5.4 Electronic structure calculations
5.5 The Generalized Gradient Approximation
5.6 More acronyms: TDDFT, CDFT, and EDFT
Chapter 6 Electron-phonon interactions
6.1 The Frohlich Hamiltonian
6.2 Phonon frequencies and the Kohn anomaly
6.3 The Peierls transition
6.4 Polarons and mass enhancement
6.5 The attractive interaction between electrons
6.6 The Nakajima Hamiltonian
Chapter 7 Superconductivity
7.1 The superconducting state
7.2 The BCS Hamiltonian
7.3 The Bogoliubov-Valatin transformation
7.4 The ground-state wave function and the energy gap
7.5 The transition temperature
7.6 Ultrasonic attenuation
7.7 The Meissner effect
7.8 Tunneling experiments
7.9 Flux quantization and the Josephson effect
7.10 The Ginzburg-Landau equations
7.11 High-temperature superconductivity
Chapter 8 Semiclassical theory of conductivity in metals
8.1 The Boltzmann equation
8.2 Calculating the conductivity of metals
8.3 Effects in magnetic fields
8.4 Inelastic scattering and the temperature dependence of resistivity
8.5 Thermal conductivity in metals
8.6 Thermoelectric effects
Chapter 9 Mesoscopic physics
9.1 Conductance quantization in quantum point contacts
9.2 Multi-terminal devices: the Landauer-Buttiker formalism
9.3 Noise in two-terminal systems
9.4 Weak localization
9.5 Coulomb blockade
Chapter 10 The quantum Hall effect
10.1 Quantized resistance and dissipationless transport
10.2 Two-dimensional electron gas and the integer quantum Hall effect
10.3 Edge states
10.4 The fractional quantum Hall effect
10.5 Quasiparticle excitations from the Laughlin state
10.6 Collective excitations above the Laughlin state
10.7 Spins
10.8 Composite fermions
Chapter 11 The Kondo effect and heavy fermions
11.1 Metals and magnetic impurities
11.2 The resistance minimum and the Kondo effect
11.3 Low-temperature limit of the Kondo problem
11.4 Heavy fermions
Bibliography
Index
目 录内容简介
这是一本凝聚态物理学的研究生教材.书中内容以相当大的篇幅介绍“软”凝聚态物理(液体、液晶等)以及非公度晶体、准晶、非晶态固体、拓扑缺陷、孤子等传统固体物理中很少讨论的课题。在理论上强调了序参量。对称性破缺、广义刚度等概念,并系统介绍了重正化群理论及其在凝聚态物理中的应用。本书每章末附有习题和参考文献。
本书为英文版。
本书为英文版。
比价列表
公众号、微信群
缺书网微信公众号
扫码进群实时获取购书优惠







