国外化学名著系列6(影印版)

目 录内容简介
Preface
Acknowledgements
1. INTRODUCTION
1.1 CATALYSIS
1.2 HOMOGENEOUS CATALYSIS
1.3 HISTORICAL NOTES ON HOMOGENEOUS CATALYSIS
1.4 CHARACTERISATION OF THE CATALYST
1.5 LIGAND EFFECTS
1.5.1 Phosphines and phosphites: electronic effects
1.5.2 Phosphines and phosphites: steric effects
1.5.3 Linear Free Energy Relationships
1.5.4 Phosphines and phosphites: bite angle effects
1.6 LIGANDS ACCORDING TO DONOR ATOMS
1.6.1 Anionic and neutral hydrocarbyl groups
1.6.2 Alkoxy and imido groups as anionic ligands
1.6.3 Amines, imines, oxazolines and related ligands
1.6.4 Phosphines, phosphites, phosphorus amides, phospholes and related ligands
1.6.5 Carbenes, carbon monoxide
1.6.6 Common anions
2. ELEMENTARY STEPS
2.1 CREATION OF A "VACANT" SITE AND CO-ORDINATION OF THE SUBSTRATE
2.2 INSERTION VERSUS MIGRATION
2.3 β-ELIMINATION AND DE-INSERTION
2.4 OXIDATIVE ADDITION
2.5 REDUCTIVE ELIMINATION
2.6 α-ELIMINATION REACTIONS
2.7 CYCLOADDITION REACTIONS INVOLVING A METAL
2.8 ACTIVATION OF A SUBSTRATE TOWARD NUCLEOPHILIC ATTACK
2.8.1 Alkenes
2.8.2 Alkynes
2.8.3 Carbon monoxide
2.8.4 Other substrates
2.9 a-BOND METATHESIS
2.10 DIHYDROGEN ACTIVATION
2.11 ACTIVATION BY LEWIS ACIDS
2.11.1 Diels-Alder additions
2.11.2 Epoxidation
2.11.3 Ester condensation
2.12 CARBON-TO-PHOSPHORUS BOND BREAKING
2.13 CARBON-TO-SULFUR BOND BREAKING
2.14 RADICAL REACTIONS
3. KINETICS
3.1 INTRODUCTION
3.2 TWO-STEP REACTION SCHEME
3.3 SIMPLIFICATIONS OF THE RATE EQUATION AND THE RATEDETERMINING STEP
3.4 DETERMINING THE SELECTIVITY
3.5 COLLECTION OF RATE DATA
3.6 IRREGULARITIES IN CATALYSIS
4. HYDROGENATION
4.1 WILKINSONS CATALYST
4.2 ASYMMETRIC HYDROGENATION
4.2.1 Introduction
4.2.2 Cinnamic acid derivatives
4.2.3 Chloride versus weakly coordinating anions; alkylphosphines versus arylphosphines
4.2.4 Incubation times
4.3 OVERVIEW OF CHIRAL BIDENTATE LIGANDS
4.3.1 DUPHOS
4.3.2 BINAP catalysis
4.3.3 Chiral ferrocene based ligands
4.4 MONODENTATE LIGANDS
4.5 NON-LINEAR EFFECTS
4.6 HYDROGEN TRANSFER
5. ISOMERISATION
5.1 HYDROGEN SHIFTS
5.2 ASYMMETRIC ISOMERISATION
5.3 OXYGEN SHIFTS
6. CARBONYLATION OF METHANOL AND METHYL ACETATE
6.1 ACETIC ACID
6.2 PROCESS SCHEME MONSANTO PROCESS
6.3 ACETIC ANHYDRIDE
6.4 OTHER SYSTEMS
6.4.1 Higher alcohols
6.4.2 Phosphine-modified rhodium catalysts
6.4.3 Other metals
7. COBALT CATALYSED HYDROFORMYLATION
7.1 INTRODUCTION
7.2 THERMODYNAMICS
7.3 COBALT CATALYSED PROCESSES
7.4 COBALT CATALYSED PROCESSES FOR HIGHER ALKENES
7.5 KUHLMANN COBALT HYDROFORMYLATION PROCESS
7.6 PHOSPHINE MODIFIED COBALT CATALYSTS: THE SHELL PROCESS
7.7 COBALT CARBONYL PHOSPHINE COMPLEXES
7.7.1 Carbonyl species
7.7.2 Phosphine derivatives
8. RHODIUM CATALYSED HYDROFORMYLATION
8.1 INTRODUCTION
8.2 TRIPHENYLPHOSPHINE AS THE LIGAND
8.2.1 The mechanism
8.2.2 Ligand effects and kinetics
8.2.3 Regioselectivity
8.2.4 Process description, rhodium-tpp
8.2.5 Two-phase process, tppts: Ruhrchemie/Rhone-Poulenc
8.2.6 One-phase catalysis, two-phase separation
8.3 DIPHOSPHINES AS LIGANDS
8.3.1 Xantphos ligands: tuneable bite angles
8.4 PHOSPHITES AS LIGANDS
8.4.1 Electronic effects
8.4.2 Phosphites: steric effects
8.5 DIPHOSPHITES
8.6 ASYMMETRIC HYDROFORMYLATION
8.6.1 Rhodium catalysts: diphosphites
8.6.2 Rhodium catalysts: phosphine-phosphite ligands
9. ALKENE OLIGOMERISATION
9.1 INTRODUCTION
9.2 SHELL-HIGHER-OLEFINS-PROCESS
9.2.1 Oligomerisation
9.2.2 Separation
9.2.3 Purification, isomerisation, and metathesis
9.2.4 New catalysts
9.3 ETHENE TRIMERISATION
9.4 OTHER ALKENE OLIGOMERISATION REACTIONS
10. PROPENE POLYMERISATION
10.1 INTRODUCTION TO POLYMER CHEMISTRY
10.1.1 Introduction to Ziegler Natta polymerisation
10.1.2 History of homogeneous catalysts
10.2 MECHANISTIC INVESTIGATIONS
10.2.1 Chain-end control: syndiotactic polymers
10.2.2 Chain-end control: isotactic polymers
10.3 ANALYSIS BY13C NMR SPECTROSCOPY
10.3.1 Introduction
10.3.2 Chain-end control
10.3.3 Site control mechanism
10.4 THE DEVELOPMENT OF METALLOCENE CATALYSTS
10.4.1 Site control: isotactic polymers
10.4.2 Site control: syndiotactic polymers
10.4.3 Double stereoselection: chain-end and site control
10.5 AGOSTIC INTERACTIONS
10.6 THE EFFECT OF DIHYDROGEN
10.7 FURTHER WORK USING PROPENE AND OTHER ALKENES
10.8 NON-METALLOCENE ETM CATALYSTS
10.9 LATE TRANSITION METAL CATALYSTS
11. HYDROCYANATION OF ALKENES
11.1 THE ADIPONITRILE PROCESS
11.2 LIGAND EFFECTS
12. PALLADIUM CATALYSED CARBONYLATIONS OF ALKENES
12.1 INTRODUCTION
12.2 POLYKETONE
12.2.1 Background and history
12.2.2 Elementary steps: initiation
12.2.3 Elementary steps: migration reactions
12.2.4 Elementary steps: chain termination, chain transfer
12.2.5 Elementary steps: ester formation as chain termination
12.3 LIGAND EFFECTS ON CHAIN LENGTH
12.3.1 Polymers
12.3.2 Ligand effects on chain length: Propanoate
12.3.3 Ligand effects on chain length: Oligomers
12.4 ETHENE/PROPENE/CO TERPOLYMERS
12.5 STEREOSELECTIVE STYRENE/CO COPOLYMERS
13. PALLADIUM CATALYSED CROSS-COUPLING REACTIONS
13.1 INTRODUCTION
13.2 ALLYLIC ALKYLATION
13.3 HECK REACTION
13.4 CROSS-COUPLING REACTION
13.5 HETEROATOM-CARBON BOND FORMATION
13.6 SUZUKI REACTION
14. EPOXIDATION
14.1 ETHENE AND PROPENE OXIDE
14.2 ASYMMETRIC EPOXIDATION
14.2.1 Introduction
14.2.2 Katsuki-Sharpless asymmetric epoxidation
14.2.3 The Jacobsen asymmetric epoxidation
14.3 ASYMMETRIC HYDROXYLATION OF ALKENES WITH OSMIUM TETROXIDE
14.3.1 Stoichiometric reactions
14.3.2 Catalytic reactions
14.4 JACOBSEN ASYMMETRIC RING-OPENING OF EPOXIDES
14.5 EPOXIDATIONS WITH DIOXYGEN
15. OXIDATION WITH DIOXYGEN
15.1 INTRODUCTION
15.2 THE WACKIER REACTION
15.3 WACKIER TYPE REACTIONS
15.4 TEREPHTHALIC ACID
15.5 PPO
16. ALKENE METATHESIS
16.1 INTRODUCTION
16.2 THE MECHANISM
16.3 REACTION OVERVIEW
16.4 WELL-CHARACTERISED TUNGSTEN AND MOLYBDENUM CATALYSTS
16.5 RUTHENIUM CATALYSTS
16.6 STEREOCHEMISTRY
16.7 CATALYST DECOMPOSITION
16.8 ALKYNES
16.9 INDUSTRIAL APPLICATIONS
17. ENANTIOSELECTIVE CYCLOPROPANATION
17.1 INTRODUCTION
17.2 COPPER CATALYSTS
17.3 RHODIUM CATALYSTS
17.3.1 Introduction
17.3.2 Examples of rhodium catalysts
18. HYDROSILYLATION
18.1 INTRODUCTION
18.2 PLATINUM CATALYSTS
18.3 ASYMMETRIC PALLADIUM CATALYSTS
18.4 RHODIUM CATALYSTS FOR ASYMMETRIC KETONE REDUCTION
19. C-H FUNCTIONALISATION
19.1 INTRODUCTION
19.2 ELECTRON-RICH METALS
19.3 HYDROGEN TRANSFER REACTIONS OF ALKANES
19.4 BORYLATION OF ALKANES
19.5 THE MURAI REACTION
19.6 CATALYTIC a-BOND METATHESIS
19.7 ELECTROPHILIC CATALYSTS
SUBJECT INDEX
Acknowledgements
1. INTRODUCTION
1.1 CATALYSIS
1.2 HOMOGENEOUS CATALYSIS
1.3 HISTORICAL NOTES ON HOMOGENEOUS CATALYSIS
1.4 CHARACTERISATION OF THE CATALYST
1.5 LIGAND EFFECTS
1.5.1 Phosphines and phosphites: electronic effects
1.5.2 Phosphines and phosphites: steric effects
1.5.3 Linear Free Energy Relationships
1.5.4 Phosphines and phosphites: bite angle effects
1.6 LIGANDS ACCORDING TO DONOR ATOMS
1.6.1 Anionic and neutral hydrocarbyl groups
1.6.2 Alkoxy and imido groups as anionic ligands
1.6.3 Amines, imines, oxazolines and related ligands
1.6.4 Phosphines, phosphites, phosphorus amides, phospholes and related ligands
1.6.5 Carbenes, carbon monoxide
1.6.6 Common anions
2. ELEMENTARY STEPS
2.1 CREATION OF A "VACANT" SITE AND CO-ORDINATION OF THE SUBSTRATE
2.2 INSERTION VERSUS MIGRATION
2.3 β-ELIMINATION AND DE-INSERTION
2.4 OXIDATIVE ADDITION
2.5 REDUCTIVE ELIMINATION
2.6 α-ELIMINATION REACTIONS
2.7 CYCLOADDITION REACTIONS INVOLVING A METAL
2.8 ACTIVATION OF A SUBSTRATE TOWARD NUCLEOPHILIC ATTACK
2.8.1 Alkenes
2.8.2 Alkynes
2.8.3 Carbon monoxide
2.8.4 Other substrates
2.9 a-BOND METATHESIS
2.10 DIHYDROGEN ACTIVATION
2.11 ACTIVATION BY LEWIS ACIDS
2.11.1 Diels-Alder additions
2.11.2 Epoxidation
2.11.3 Ester condensation
2.12 CARBON-TO-PHOSPHORUS BOND BREAKING
2.13 CARBON-TO-SULFUR BOND BREAKING
2.14 RADICAL REACTIONS
3. KINETICS
3.1 INTRODUCTION
3.2 TWO-STEP REACTION SCHEME
3.3 SIMPLIFICATIONS OF THE RATE EQUATION AND THE RATEDETERMINING STEP
3.4 DETERMINING THE SELECTIVITY
3.5 COLLECTION OF RATE DATA
3.6 IRREGULARITIES IN CATALYSIS
4. HYDROGENATION
4.1 WILKINSONS CATALYST
4.2 ASYMMETRIC HYDROGENATION
4.2.1 Introduction
4.2.2 Cinnamic acid derivatives
4.2.3 Chloride versus weakly coordinating anions; alkylphosphines versus arylphosphines
4.2.4 Incubation times
4.3 OVERVIEW OF CHIRAL BIDENTATE LIGANDS
4.3.1 DUPHOS
4.3.2 BINAP catalysis
4.3.3 Chiral ferrocene based ligands
4.4 MONODENTATE LIGANDS
4.5 NON-LINEAR EFFECTS
4.6 HYDROGEN TRANSFER
5. ISOMERISATION
5.1 HYDROGEN SHIFTS
5.2 ASYMMETRIC ISOMERISATION
5.3 OXYGEN SHIFTS
6. CARBONYLATION OF METHANOL AND METHYL ACETATE
6.1 ACETIC ACID
6.2 PROCESS SCHEME MONSANTO PROCESS
6.3 ACETIC ANHYDRIDE
6.4 OTHER SYSTEMS
6.4.1 Higher alcohols
6.4.2 Phosphine-modified rhodium catalysts
6.4.3 Other metals
7. COBALT CATALYSED HYDROFORMYLATION
7.1 INTRODUCTION
7.2 THERMODYNAMICS
7.3 COBALT CATALYSED PROCESSES
7.4 COBALT CATALYSED PROCESSES FOR HIGHER ALKENES
7.5 KUHLMANN COBALT HYDROFORMYLATION PROCESS
7.6 PHOSPHINE MODIFIED COBALT CATALYSTS: THE SHELL PROCESS
7.7 COBALT CARBONYL PHOSPHINE COMPLEXES
7.7.1 Carbonyl species
7.7.2 Phosphine derivatives
8. RHODIUM CATALYSED HYDROFORMYLATION
8.1 INTRODUCTION
8.2 TRIPHENYLPHOSPHINE AS THE LIGAND
8.2.1 The mechanism
8.2.2 Ligand effects and kinetics
8.2.3 Regioselectivity
8.2.4 Process description, rhodium-tpp
8.2.5 Two-phase process, tppts: Ruhrchemie/Rhone-Poulenc
8.2.6 One-phase catalysis, two-phase separation
8.3 DIPHOSPHINES AS LIGANDS
8.3.1 Xantphos ligands: tuneable bite angles
8.4 PHOSPHITES AS LIGANDS
8.4.1 Electronic effects
8.4.2 Phosphites: steric effects
8.5 DIPHOSPHITES
8.6 ASYMMETRIC HYDROFORMYLATION
8.6.1 Rhodium catalysts: diphosphites
8.6.2 Rhodium catalysts: phosphine-phosphite ligands
9. ALKENE OLIGOMERISATION
9.1 INTRODUCTION
9.2 SHELL-HIGHER-OLEFINS-PROCESS
9.2.1 Oligomerisation
9.2.2 Separation
9.2.3 Purification, isomerisation, and metathesis
9.2.4 New catalysts
9.3 ETHENE TRIMERISATION
9.4 OTHER ALKENE OLIGOMERISATION REACTIONS
10. PROPENE POLYMERISATION
10.1 INTRODUCTION TO POLYMER CHEMISTRY
10.1.1 Introduction to Ziegler Natta polymerisation
10.1.2 History of homogeneous catalysts
10.2 MECHANISTIC INVESTIGATIONS
10.2.1 Chain-end control: syndiotactic polymers
10.2.2 Chain-end control: isotactic polymers
10.3 ANALYSIS BY13C NMR SPECTROSCOPY
10.3.1 Introduction
10.3.2 Chain-end control
10.3.3 Site control mechanism
10.4 THE DEVELOPMENT OF METALLOCENE CATALYSTS
10.4.1 Site control: isotactic polymers
10.4.2 Site control: syndiotactic polymers
10.4.3 Double stereoselection: chain-end and site control
10.5 AGOSTIC INTERACTIONS
10.6 THE EFFECT OF DIHYDROGEN
10.7 FURTHER WORK USING PROPENE AND OTHER ALKENES
10.8 NON-METALLOCENE ETM CATALYSTS
10.9 LATE TRANSITION METAL CATALYSTS
11. HYDROCYANATION OF ALKENES
11.1 THE ADIPONITRILE PROCESS
11.2 LIGAND EFFECTS
12. PALLADIUM CATALYSED CARBONYLATIONS OF ALKENES
12.1 INTRODUCTION
12.2 POLYKETONE
12.2.1 Background and history
12.2.2 Elementary steps: initiation
12.2.3 Elementary steps: migration reactions
12.2.4 Elementary steps: chain termination, chain transfer
12.2.5 Elementary steps: ester formation as chain termination
12.3 LIGAND EFFECTS ON CHAIN LENGTH
12.3.1 Polymers
12.3.2 Ligand effects on chain length: Propanoate
12.3.3 Ligand effects on chain length: Oligomers
12.4 ETHENE/PROPENE/CO TERPOLYMERS
12.5 STEREOSELECTIVE STYRENE/CO COPOLYMERS
13. PALLADIUM CATALYSED CROSS-COUPLING REACTIONS
13.1 INTRODUCTION
13.2 ALLYLIC ALKYLATION
13.3 HECK REACTION
13.4 CROSS-COUPLING REACTION
13.5 HETEROATOM-CARBON BOND FORMATION
13.6 SUZUKI REACTION
14. EPOXIDATION
14.1 ETHENE AND PROPENE OXIDE
14.2 ASYMMETRIC EPOXIDATION
14.2.1 Introduction
14.2.2 Katsuki-Sharpless asymmetric epoxidation
14.2.3 The Jacobsen asymmetric epoxidation
14.3 ASYMMETRIC HYDROXYLATION OF ALKENES WITH OSMIUM TETROXIDE
14.3.1 Stoichiometric reactions
14.3.2 Catalytic reactions
14.4 JACOBSEN ASYMMETRIC RING-OPENING OF EPOXIDES
14.5 EPOXIDATIONS WITH DIOXYGEN
15. OXIDATION WITH DIOXYGEN
15.1 INTRODUCTION
15.2 THE WACKIER REACTION
15.3 WACKIER TYPE REACTIONS
15.4 TEREPHTHALIC ACID
15.5 PPO
16. ALKENE METATHESIS
16.1 INTRODUCTION
16.2 THE MECHANISM
16.3 REACTION OVERVIEW
16.4 WELL-CHARACTERISED TUNGSTEN AND MOLYBDENUM CATALYSTS
16.5 RUTHENIUM CATALYSTS
16.6 STEREOCHEMISTRY
16.7 CATALYST DECOMPOSITION
16.8 ALKYNES
16.9 INDUSTRIAL APPLICATIONS
17. ENANTIOSELECTIVE CYCLOPROPANATION
17.1 INTRODUCTION
17.2 COPPER CATALYSTS
17.3 RHODIUM CATALYSTS
17.3.1 Introduction
17.3.2 Examples of rhodium catalysts
18. HYDROSILYLATION
18.1 INTRODUCTION
18.2 PLATINUM CATALYSTS
18.3 ASYMMETRIC PALLADIUM CATALYSTS
18.4 RHODIUM CATALYSTS FOR ASYMMETRIC KETONE REDUCTION
19. C-H FUNCTIONALISATION
19.1 INTRODUCTION
19.2 ELECTRON-RICH METALS
19.3 HYDROGEN TRANSFER REACTIONS OF ALKANES
19.4 BORYLATION OF ALKANES
19.5 THE MURAI REACTION
19.6 CATALYTIC a-BOND METATHESIS
19.7 ELECTROPHILIC CATALYSTS
SUBJECT INDEX
目 录内容简介
《国外化学名著系列6(影印版)》基于作者在教学及工业实践方面广泛的经验,探讨了许多新的和旧的重要反应。每章均以基础知识开始,以最新的内容结束。《国外化学名著系列6(影印版)》侧重于要领但也列举了许多实验室合成有机化学品的关键工业流程和应用流程。全书涵盖精细化学品,大宗化学品,聚合物,高技术聚合物,药品,也包括重要的技巧和反应类型等。同时还介绍了一些反应过程、环境问题和安全问题。
比价列表
公众号、微信群

微信公众号

实时获取购书优惠