时代教育·国外高校优秀教材精选:微积分(英文版)(原书第9版)

目 录内容简介
出版说明.
序
Preface
0 Preliminaries
0.1 RealNumbers,Estimation,andLogic
0.2 InequalitiesandAbsoluteValues
0.3 TheRectangularCoordinateSystem
0.4 GraphsofEquations
0.5 FunctionsandTheirGraphs
0.6 OperationsonFunctions
0.7 TrigonometricFunctions
0.8 ChapterReview
ReviewandPreviewProblems
1 Limits
1.1 IntroductiontoLimits
1.2 RigorousStudyofLimits
1.3 LimitTheorems
1.4 LimitsInvolvingTrigonometricFunctions
1.5 LimitsatInfinity;InfiniteLimits
1.6 ContinuityofFunctions
1.7 ChapterReview
ReviewandPreviewProblems
2 TheDerivative
2.1 TwoProblemswithOneTheme
2.2 TheDerivative
2.3 RulesforFindingDerivatives
2.4 DerivativesofTrigonometricFunctions
2.5 TheChainRule
2.6 Higher-OrderDerivatives
2.7 ImplicitDifferentiation
2.8 RelatedRates
2.9 DifferentialsandApproximations
2.1 0ChapterReview
ReviewandPreviewProblems
3 ApplicationsoftheDerivative
3.1 MaximaandMinima
3.2 MonotonicityandConcavity
3.3 LocalExtremaandExtremaonOpenIntervals
3.4 PracticalProblems
3.5 GraphingFunctionsUsingCalculus
3.6 TheMeanValueTheoremforDerivatives
3.7 SolvingEquationsNumerically
3.8 Antiderivatives
3.9 IntroductiontoDifferentialEquations
3.1 0ChapterReview
ReviewandPreviewProblems
4 TheDeftniteIntegral
4.1 IntroductiontoArea
4.2 TheDefiniteIntegral
4.3 TheFirstFundamentalTheoremofCalculus
4.4 TheSecondFundamentalTheoremofCalculusandtheMethodofSubstitution
4.5 TheMeanValueTheoremforIntegralsandtheUseofSymmetry
4.6 NumericalIntegration
4.7 ChapterReview
ReviewandPreviewProblems
5 ApplicationsoftheIntegral
5.1 TheAreaofaPlaneRegion
5.2 VolumesofSolids:Slabs,Disks,Wlashers
5.3 VolumesofSolidsofRevolution:Shells
5.4 LengthofaPlaneCurve
5.5 WorkandFluidForce
5.6 MomentsandCenterofMass
5.7 ProbabilityandRandomVariabtes
5.8 ChapterReview322
ReviewandPreviewProblems
6 TranscendentalFunctions
6.1 TheNaturalLogarithmFunction
6.2 InverseFunctionsandTheirDerivatives
6.3 TheNaturalExponentialFunction
6.4 GeneralExponentialandLogarithmicFunctions
6.5 ExponentialGrowthandDecay
6.6 First-OrderLinearDifferentialEquations
6.7 ApproximationsforDifferentialEquations
6.8 TheInverseTrigonometricFunctionsandTheirDerivatives
6.9 TheHyperbolicFunctionsandTheirInverses
6.1 0ChapterReview
ReviewandPreviewProblems
7 TechniquesofIntegration
7.1 BasicIntegrationRules
7.2 IntegrationbyParts
7.3 SomeTrigonometricIntegrals
7.4 RationalizingSubstitutions..
7.5 IntegrationofRationalFunctionsUsingPartialFractions
7.6 StrategiesforIntegration
7.7 ChapterReview
ReviewandPreviewProblems
8 IndeterminateFormsandImproperIntegrals
8.1 IndeterminateFormsofTypeO/O
8.2 OtherIndeterminateForms
8.3 ImproperIntegrals:InfiniteLimitsofIntegration
8.4 ImproperIntegrals:InfiniteIntegrands
8.5 ChapterReview
ReviewandPreviewProblems
9 InfiniteSeries
9.1 InfiniteSequences
9.2 InfiniteSeries
9.3 PositiveSeries:TheIntegralTest
9.4 PositiveSeries:OtherTests
9.5 AlternatingSeries,AbsoluteConvergence,andConditionalConvergence
9.6 PowerSeries
9.7 OperationsonPowerSeries
9.8 TaylorandMaclaurinSeries
9.9 TheTaylorApproximationtoaFunction
9.1 0ChapterReview
ReviewandPreviewProblems
10 ConicsandPolarCoordinates
10.1 TheParabola
10.2 EllipsesandHyperbolas
10.3 TranslationandRotationofAxes
10.4 ParametricRepresentationofCurvesinthePlane
10.5 ThePolarCoordinateSystem
10.6 GraphsofPolarEquations
10.7 CalculusinPolarCoordinates
10.8 ChapterReview
ReviewandPreviewProblems554
11 GeometryinSpaceandVectors
11.1 CartesianCoordinatesinThree-Space
11.2 Vectors
11.3 TheDotProduct
11.4 TheCrossProduct
11.5 Vector-ValuedFunctionsandCurvilinearMotion
11.6 LinesandTangentLinesinThree-Space
11.7 CurvatureandComponentsofAcceleration
11.8 SurfacesinThree-Space
11.9 CylindricalandSphericalCoordinates
11.1 0ChapterReview
ReviewandPreviewProblems
12 DerivativesforFunctionsofTwoorMoreVariables
12.1 FunctionsOfTwoorMoreVariables
12.2 PartialDerivatives
12.3 LimitsandContinuity
12.4 Differentiabilitv
12.5 DirectionalDerivativesandGradients
12.6 TheChainRule
12.7 TangentPlanesandApproximations
12.8 MaximaandMinima
12.9 TheMethodofLagrangeMultipliers
12.1 0ChapterReview
ReviewandPreviewProblems
13 MultipleIntegrals
13.1 DoubleIntegralsoverRectangles
13.2 IteratedIntegrals
13.3 DoubleIntegralsoverNonrectangularRegions
13.4 DoubleIntegralsinPolarCoordinates
13.5 ApplicationsofDoubleIntegrals
13.6 SurfaceArea
13.7 TripleIntegralsinCartesianCoordinates
13.8 TripleIntegralsinCylindricalandSphericalCoordinates
13.9 ChangeofVariablesinMultipleIntegrals
13.1 0ChapterReview
ReviewandPreviewProblems
14 VectorCalculus
14.1 VlectorFields
14.2 LineIntegrals
14.3 IndeDendenceofPath
14.4 GreensTheoreminthePlane
14.5 SurfaceIntegrals755
14.6 GausssDivergenceTheorem
14.7 StokessTheorem
14.8 ChapterReview
Appendix
A.1 MathematicalInduction
A.2 ProofsofSeveralTheorems
教辅材料说明
教辅材料申请表
序
Preface
0 Preliminaries
0.1 RealNumbers,Estimation,andLogic
0.2 InequalitiesandAbsoluteValues
0.3 TheRectangularCoordinateSystem
0.4 GraphsofEquations
0.5 FunctionsandTheirGraphs
0.6 OperationsonFunctions
0.7 TrigonometricFunctions
0.8 ChapterReview
ReviewandPreviewProblems
1 Limits
1.1 IntroductiontoLimits
1.2 RigorousStudyofLimits
1.3 LimitTheorems
1.4 LimitsInvolvingTrigonometricFunctions
1.5 LimitsatInfinity;InfiniteLimits
1.6 ContinuityofFunctions
1.7 ChapterReview
ReviewandPreviewProblems
2 TheDerivative
2.1 TwoProblemswithOneTheme
2.2 TheDerivative
2.3 RulesforFindingDerivatives
2.4 DerivativesofTrigonometricFunctions
2.5 TheChainRule
2.6 Higher-OrderDerivatives
2.7 ImplicitDifferentiation
2.8 RelatedRates
2.9 DifferentialsandApproximations
2.1 0ChapterReview
ReviewandPreviewProblems
3 ApplicationsoftheDerivative
3.1 MaximaandMinima
3.2 MonotonicityandConcavity
3.3 LocalExtremaandExtremaonOpenIntervals
3.4 PracticalProblems
3.5 GraphingFunctionsUsingCalculus
3.6 TheMeanValueTheoremforDerivatives
3.7 SolvingEquationsNumerically
3.8 Antiderivatives
3.9 IntroductiontoDifferentialEquations
3.1 0ChapterReview
ReviewandPreviewProblems
4 TheDeftniteIntegral
4.1 IntroductiontoArea
4.2 TheDefiniteIntegral
4.3 TheFirstFundamentalTheoremofCalculus
4.4 TheSecondFundamentalTheoremofCalculusandtheMethodofSubstitution
4.5 TheMeanValueTheoremforIntegralsandtheUseofSymmetry
4.6 NumericalIntegration
4.7 ChapterReview
ReviewandPreviewProblems
5 ApplicationsoftheIntegral
5.1 TheAreaofaPlaneRegion
5.2 VolumesofSolids:Slabs,Disks,Wlashers
5.3 VolumesofSolidsofRevolution:Shells
5.4 LengthofaPlaneCurve
5.5 WorkandFluidForce
5.6 MomentsandCenterofMass
5.7 ProbabilityandRandomVariabtes
5.8 ChapterReview322
ReviewandPreviewProblems
6 TranscendentalFunctions
6.1 TheNaturalLogarithmFunction
6.2 InverseFunctionsandTheirDerivatives
6.3 TheNaturalExponentialFunction
6.4 GeneralExponentialandLogarithmicFunctions
6.5 ExponentialGrowthandDecay
6.6 First-OrderLinearDifferentialEquations
6.7 ApproximationsforDifferentialEquations
6.8 TheInverseTrigonometricFunctionsandTheirDerivatives
6.9 TheHyperbolicFunctionsandTheirInverses
6.1 0ChapterReview
ReviewandPreviewProblems
7 TechniquesofIntegration
7.1 BasicIntegrationRules
7.2 IntegrationbyParts
7.3 SomeTrigonometricIntegrals
7.4 RationalizingSubstitutions..
7.5 IntegrationofRationalFunctionsUsingPartialFractions
7.6 StrategiesforIntegration
7.7 ChapterReview
ReviewandPreviewProblems
8 IndeterminateFormsandImproperIntegrals
8.1 IndeterminateFormsofTypeO/O
8.2 OtherIndeterminateForms
8.3 ImproperIntegrals:InfiniteLimitsofIntegration
8.4 ImproperIntegrals:InfiniteIntegrands
8.5 ChapterReview
ReviewandPreviewProblems
9 InfiniteSeries
9.1 InfiniteSequences
9.2 InfiniteSeries
9.3 PositiveSeries:TheIntegralTest
9.4 PositiveSeries:OtherTests
9.5 AlternatingSeries,AbsoluteConvergence,andConditionalConvergence
9.6 PowerSeries
9.7 OperationsonPowerSeries
9.8 TaylorandMaclaurinSeries
9.9 TheTaylorApproximationtoaFunction
9.1 0ChapterReview
ReviewandPreviewProblems
10 ConicsandPolarCoordinates
10.1 TheParabola
10.2 EllipsesandHyperbolas
10.3 TranslationandRotationofAxes
10.4 ParametricRepresentationofCurvesinthePlane
10.5 ThePolarCoordinateSystem
10.6 GraphsofPolarEquations
10.7 CalculusinPolarCoordinates
10.8 ChapterReview
ReviewandPreviewProblems554
11 GeometryinSpaceandVectors
11.1 CartesianCoordinatesinThree-Space
11.2 Vectors
11.3 TheDotProduct
11.4 TheCrossProduct
11.5 Vector-ValuedFunctionsandCurvilinearMotion
11.6 LinesandTangentLinesinThree-Space
11.7 CurvatureandComponentsofAcceleration
11.8 SurfacesinThree-Space
11.9 CylindricalandSphericalCoordinates
11.1 0ChapterReview
ReviewandPreviewProblems
12 DerivativesforFunctionsofTwoorMoreVariables
12.1 FunctionsOfTwoorMoreVariables
12.2 PartialDerivatives
12.3 LimitsandContinuity
12.4 Differentiabilitv
12.5 DirectionalDerivativesandGradients
12.6 TheChainRule
12.7 TangentPlanesandApproximations
12.8 MaximaandMinima
12.9 TheMethodofLagrangeMultipliers
12.1 0ChapterReview
ReviewandPreviewProblems
13 MultipleIntegrals
13.1 DoubleIntegralsoverRectangles
13.2 IteratedIntegrals
13.3 DoubleIntegralsoverNonrectangularRegions
13.4 DoubleIntegralsinPolarCoordinates
13.5 ApplicationsofDoubleIntegrals
13.6 SurfaceArea
13.7 TripleIntegralsinCartesianCoordinates
13.8 TripleIntegralsinCylindricalandSphericalCoordinates
13.9 ChangeofVariablesinMultipleIntegrals
13.1 0ChapterReview
ReviewandPreviewProblems
14 VectorCalculus
14.1 VlectorFields
14.2 LineIntegrals
14.3 IndeDendenceofPath
14.4 GreensTheoreminthePlane
14.5 SurfaceIntegrals755
14.6 GausssDivergenceTheorem
14.7 StokessTheorem
14.8 ChapterReview
Appendix
A.1 MathematicalInduction
A.2 ProofsofSeveralTheorems
教辅材料说明
教辅材料申请表
目 录内容简介
《微积分(英文版·原书第9版)》是一本在美国大学中使用面比较广泛的微积分教材。有重视应用、便于自学、习题数量与内容比较丰富等特点。而与其他美国教材的差别在于严谨性,《微积分(英文版·原书第9版)》许多定理都有较严谨的证明,这一点与我国许多现行的理工科微积分教材比较类似。在美国也是另一种风格的教材。
《微积分(英文版·原书第9版)》强调应用,习题数量多,类型多,重视不同数学学科之间的交叉,强调其实际背景,反映当代科技发展。每章之后有附加内容,有利用图形计算器或数学软件计算的习题或带研究性的小题目等。
《微积分(英文版·原书第9版)》强调应用,习题数量多,类型多,重视不同数学学科之间的交叉,强调其实际背景,反映当代科技发展。每章之后有附加内容,有利用图形计算器或数学软件计算的习题或带研究性的小题目等。
比价列表
公众号、微信群

微信公众号

实时获取购书优惠