高等学校土建类教材:钢结构设计(英文版)

CHAPTER 1 INTRODUCTION
1.1 Structural Design
1.2 General Design Process
1.3 Requirements
1.4 Building Codes and Specifications
1.5 Design Approaches
CHAPTER 2 STRUCTURAL STEEL
2.1 What is Structural Steel
2.2 Types of Steels
2.3 Advantages and Disadvantages of Steel
2.4 Structural Shapes
CHAPTER 3 TENSION MEMBER DESIGN
3.1 General
3.2 Design Concepts
3.3 Net Section Area An
3.4 Effective Net Area: A.(LRFD B3)
3.5 Comments on Chinese GB code
3.6 Pin-connected Elements
CHAPTER 4 COLUMNS UNDER AXIAL COMPRESSION
4.1 General
4.2 Elastic Theory-Stability of Column Subjected to Axial Load
4.3 Compression Strength
4.4 AISC LRFD Criteria
4.5 Comparison of GB Code and LRFD Design for Axially Loaded Columns
4.6 Local Stability
4.7 Flexural Torsional Buckling
4.8 Frame Columns
CHAPTER 5 BEAMS AND GIRDERS
5.1 Introduction
5.2 Review of Conventional Beam Theory
5.3 General Design Requirements
5.4 Flexural Design: Section Capacity
5.5 Flexural Design:for Lateral Torsional Buckling (LTB)
5.6 Shear Design
5.7 Discussion and Comparison of GB Code and AISCS
5.8 Comprehensive Beam Design Examples
5.9 Bearing Considerations for Beam Subjected to Concentrated Loads
CHAPTER 6 MEMBERS UNDER COMBINED AXIAL FORCES AND MOMENTS(BEAM-COLUMNS)
6.1 Introduction
6.2 Moment-Axial Load Interaction Relationship
6.3 LRFD Design Requirements for Beam -Columns
6.4 Theory of Moment Amplification
6.5 Design Moment
6.6 Summary of GB Code Design of Beam-Columns
6.7 Design of Beam-Columns
CHAPTER 7 DESIGN OF SIMPLE CONNECTIONS
7.1 Introduction
7.2 Types of Fasteners
7.3 Strength and Design of Bolts for Bearing Type Shear Connections
7.4 Bearing Strength and Design
7.5 Block Shear Strength and Design
7.6 Slip-Critical Connections
7.7 Welded Connections -
7.8 Fillet Weld Design for Simple Connections
CHAPTER 8 DESIGN OF ECCENTRIC CONNECTIONS
8.1 Introduction
8.2 Bolted Eccentric Connection with Shear Only
8.3 Welded Eccentric Connection Subjected to Shear Only
8.4 Bolted Eccentric Connection Subjected to Shear Plus Tension
8.5 Welded Eccentric Connection with Shear Plus Tension
CHAPTER 9 PLATE GIRDERS
9.1 Introduction
9.2 Flexural Design
9.3 Shear Design
9.4 Interaction of Flexural and Shear
9.5 Requirements for Transverse Stiffeners
CHAPTER 10 INTRODUCTION TO SEISMIC DESIGN
10.1 Introduction
I0.2 Seismic Design Forces
I0.3 Static Equivalent Lateral Forces (SELF)
I0.4 Drift Limitations
I0.5 Special Requirements for Materials
I0.6 Moment-Resisting Frames
REFERENCES
APPENDIX 1:STRENGTH DESIGN OF STEEL AND CONNECTION
APPENDIX 2:SECTION PROPERTIES
APPENDIX 3:TYPICAL STEEL SHAPES
APPENDIX 4:SHAPE FACTORS OF SECTIONS
INDEX
1.1 Structural Design
1.2 General Design Process
1.3 Requirements
1.4 Building Codes and Specifications
1.5 Design Approaches
CHAPTER 2 STRUCTURAL STEEL
2.1 What is Structural Steel
2.2 Types of Steels
2.3 Advantages and Disadvantages of Steel
2.4 Structural Shapes
CHAPTER 3 TENSION MEMBER DESIGN
3.1 General
3.2 Design Concepts
3.3 Net Section Area An
3.4 Effective Net Area: A.(LRFD B3)
3.5 Comments on Chinese GB code
3.6 Pin-connected Elements
CHAPTER 4 COLUMNS UNDER AXIAL COMPRESSION
4.1 General
4.2 Elastic Theory-Stability of Column Subjected to Axial Load
4.3 Compression Strength
4.4 AISC LRFD Criteria
4.5 Comparison of GB Code and LRFD Design for Axially Loaded Columns
4.6 Local Stability
4.7 Flexural Torsional Buckling
4.8 Frame Columns
CHAPTER 5 BEAMS AND GIRDERS
5.1 Introduction
5.2 Review of Conventional Beam Theory
5.3 General Design Requirements
5.4 Flexural Design: Section Capacity
5.5 Flexural Design:for Lateral Torsional Buckling (LTB)
5.6 Shear Design
5.7 Discussion and Comparison of GB Code and AISCS
5.8 Comprehensive Beam Design Examples
5.9 Bearing Considerations for Beam Subjected to Concentrated Loads
CHAPTER 6 MEMBERS UNDER COMBINED AXIAL FORCES AND MOMENTS(BEAM-COLUMNS)
6.1 Introduction
6.2 Moment-Axial Load Interaction Relationship
6.3 LRFD Design Requirements for Beam -Columns
6.4 Theory of Moment Amplification
6.5 Design Moment
6.6 Summary of GB Code Design of Beam-Columns
6.7 Design of Beam-Columns
CHAPTER 7 DESIGN OF SIMPLE CONNECTIONS
7.1 Introduction
7.2 Types of Fasteners
7.3 Strength and Design of Bolts for Bearing Type Shear Connections
7.4 Bearing Strength and Design
7.5 Block Shear Strength and Design
7.6 Slip-Critical Connections
7.7 Welded Connections -
7.8 Fillet Weld Design for Simple Connections
CHAPTER 8 DESIGN OF ECCENTRIC CONNECTIONS
8.1 Introduction
8.2 Bolted Eccentric Connection with Shear Only
8.3 Welded Eccentric Connection Subjected to Shear Only
8.4 Bolted Eccentric Connection Subjected to Shear Plus Tension
8.5 Welded Eccentric Connection with Shear Plus Tension
CHAPTER 9 PLATE GIRDERS
9.1 Introduction
9.2 Flexural Design
9.3 Shear Design
9.4 Interaction of Flexural and Shear
9.5 Requirements for Transverse Stiffeners
CHAPTER 10 INTRODUCTION TO SEISMIC DESIGN
10.1 Introduction
I0.2 Seismic Design Forces
I0.3 Static Equivalent Lateral Forces (SELF)
I0.4 Drift Limitations
I0.5 Special Requirements for Materials
I0.6 Moment-Resisting Frames
REFERENCES
APPENDIX 1:STRENGTH DESIGN OF STEEL AND CONNECTION
APPENDIX 2:SECTION PROPERTIES
APPENDIX 3:TYPICAL STEEL SHAPES
APPENDIX 4:SHAPE FACTORS OF SECTIONS
INDEX
肖岩,现任教育部长江学者,湖南大学特聘教授,湖南大学土木工程学院院长,美国南加州大学土木系终身教授.、担任的社会职务包括:美国土木工程师学会(ASCE)《Joumal of Struc{u ral Engineering》副主编;国际组合结构协会(ASCCS)理事;《自然灾害学报》副主任委员;《建筑钢结构进展》杂志特约编辑。
1982年9月,获得天津大学结构工程专业工学学士学位;1986年3月和1989:年3月,分别获得日本九州大学工学硕士和工学博士学位;1 990年3月至1994年5月,在美国加州大学圣迭哥分校任研究员;自1994年6月起,在美国南加州大学土木系任教;自2001年10月起,被评为教育部长江学者,担任湖南大学特聘教授。
主要科研方向:
建筑及桥梁结构的抗震设计,抗震加固;
钢筋混凝土结构,钢结构,竹、木结构及组合结构的抗震性能和设计;
高性能新材料在结构中的应用等。
J.C.安德森,ANDERSON.J.C,现任美国南加州大学土木系终身教授,美国土木工程师学会(ASCE)、地震工程研究协会(EERI)和美国混凝土协会(Acf)会员。曾获1989年美国土木工程师学会J.James R C rc)es论文奖章。
1957年至1962年,在密执安大学学习,获工学学士学位和硕士学位;1965年至1969年,在加州大学伯克利分校学习,获哲学博士学位;自1974年起,在美国南加州大学土木系任教。
主要科研方向:
建筑钢结构的抗震设计;
结构动力分析。
1982年9月,获得天津大学结构工程专业工学学士学位;1986年3月和1989:年3月,分别获得日本九州大学工学硕士和工学博士学位;1 990年3月至1994年5月,在美国加州大学圣迭哥分校任研究员;自1994年6月起,在美国南加州大学土木系任教;自2001年10月起,被评为教育部长江学者,担任湖南大学特聘教授。
主要科研方向:
建筑及桥梁结构的抗震设计,抗震加固;
钢筋混凝土结构,钢结构,竹、木结构及组合结构的抗震性能和设计;
高性能新材料在结构中的应用等。
J.C.安德森,ANDERSON.J.C,现任美国南加州大学土木系终身教授,美国土木工程师学会(ASCE)、地震工程研究协会(EERI)和美国混凝土协会(Acf)会员。曾获1989年美国土木工程师学会J.James R C rc)es论文奖章。
1957年至1962年,在密执安大学学习,获工学学士学位和硕士学位;1965年至1969年,在加州大学伯克利分校学习,获哲学博士学位;自1974年起,在美国南加州大学土木系任教。
主要科研方向:
建筑钢结构的抗震设计;
结构动力分析。
《钢结构设计(英文版)》为使国内大学的本科生和研究生,科研人员和设计、施工技术人员能够对国外的钢结构设计方法有初步了解,作者按照美国钢结构规范AISC进行《钢结构设计》的编写,内容与国内大学本科钢结构课程基本一致,注重基本原理的讨论,并辅以中美规范对比。《钢结构设计》的目的是使读者不仅对钢结构设计的基本理论和美国规范有所掌握,还能了解中美钢结构设计上的异同,从而有助于读者提高对钢结构的认识。
《钢结构设计》除可用作大学本科土木工程专业的“钢结构”英语教学或双语教学教材外,也可供研究生和设计人员参考。
《钢结构设计》除可用作大学本科土木工程专业的“钢结构”英语教学或双语教学教材外,也可供研究生和设计人员参考。
比价列表
公众号、微信群

微信公众号

实时获取购书优惠