数学经典教材:扩散过程及其样本轨道(英文版)

目 录内容简介
Prerequisites
Chapter 1. The standard BRowNian motion
1.1. The standard random walk
1.2. Passage times for the standard random walk
1.3. HINCIN‘S proof of the DE MOIVRE-LAPLACE limit theorem
1.4. The standard BROWNian motion
1.5. P. LEVY’s cotruction
1.6. Strict MAgKOV character
1.7. Passage times for the standard BgowNian motion
Note 1: Homogeneous differential processes with increasing paths
1.8. KOLMOGOROV‘S test and the law of the iterated logarithm
1.9. P. LEVY’S HOLDER condition
1.10. Approximating the BgowNian motion by a random walk
Chapter 2. BROWNian local times
2.1. The reflecting BRowNian motion
2.2. P. LEVY‘S local time
2.3. Elastic BgowNian motion
2.4. t+ and down-crossings
2.5. t+ as HAUSDORFF-BESICOVITCH 1/2-dimeional measure
Note 1: Submartingales
Note 2: HAUSDORFF measure and dimeion
2.6. Kxc’s formula for BRowNian funetionals
2.7. BESSEL processes
2.8. Standard BRowNian local time
2.9. BRowNian excuio
2.10. Application of the BESSEL process to BROWNian excuio
2.11. A time substitution
Chapter 3. The general t-dimeional diffusion
3.t. Definition
3.2. MARKOV times
3.3. Matching numbe
3.4. Singular points
3.5. Decomposing the general diffusion into simple pieces
3.6. GREEN operato and the spaceD
3.7. Generato
3.8. Generato continued
3.9. Stopped diffusion
Chapter 4. Generato
4.1. A general view
4.2. as local differential operator: coervative non-singular case
4.3. as local differential operator: general non-singular case
4.4. A second proof
4.5. at an isolated singular point
4.6. Solving
4.7. as global differential operator: non-singular case
4.8. on the shunts
4.9. as global differential operator: singular case
4.10. Passage times
Note 1: Differential processes with increasing paths
4.ft. Eigen-differential expaio for GREEN functio and traition
deities
4.12. KOLMOGOROV‘S test
Chapter 5. Time changes and killing
5.1. Cotruction of sample paths: a general view
5.2. Time changes
5.3. Time changes
5.4. Local times
5.5. Subordination and chain rule
5.6. Killing times
5.7. FELLER’S BROWNlan motio
5.8. IKEDA‘S example
5.9. Time substitutio must come from local time integrals
5.10. Shunts
5.11. Shunts with killing
5.12. Creation of mass
5.13. A parabolic equation
5.f4. Explosio
5.15. A non-linear parabolic equation
Chapter 6. Local and invee local times
6.1. Local and invee local times
6.2. LEVY measures
6.3. t and the intervals of [0, + ∞)
6.4. A counter example: t and the intervals of [0, +∞)
6.5a t and downcrossings
6.5b t as HAUSDORFF measure
6.5c t as diffusion
6.5d Excuio
6.6. Dimeion numbe
6.7. Comparison tests Noteion Dimeion numbe and fractional dimeional capacities
6.8. An individual ergodic theorem
Chapter 7. BRowNian motion in several dimeio
7.1. Diffusion in several dimeio
7.2. The standard BRowNian motion in several dimeio
7.3. Wandering out to oo
7.4. GREENian domai and GREEN functio
7.5. Excessive functio
7.6. Application to the spectrum of /1/2
7.7. Potentials and hitting probabilities
7.8. NEWTONian capacities
7.9. GAUSS’s quadratic form
7.10. WIENER‘S test
7.11. Applicatio of WIENER’S test
7.12. DIRICHLET problem
7.13. NEUHANN problem
7.14. Space-time BROWNian moticn
7.15. Spherical BROWNian motion and skew products
7.16. Spinning
7.17. An individual ergodic theorem for the standard 2-dimeional BROWNian motion
7.18. Covering BROWNian motio
7.19. Diffusio with BROWNian hitting probabilities
7.20. Right-continuous paths
7.21. RIESZ potentials
Chapter 8. A general view of diffusion in several dimeio
8.1. Similar diffusio
8.2. as differential operater
8.3. Time substitutio
8.4. Potentials
8.5. Boundaries
8.6. Elliptic operato
8.7. FELLER‘S little boundary and tail algebras
Bibliography
List of notatio
Index
Chapter 1. The standard BRowNian motion
1.1. The standard random walk
1.2. Passage times for the standard random walk
1.3. HINCIN‘S proof of the DE MOIVRE-LAPLACE limit theorem
1.4. The standard BROWNian motion
1.5. P. LEVY’s cotruction
1.6. Strict MAgKOV character
1.7. Passage times for the standard BgowNian motion
Note 1: Homogeneous differential processes with increasing paths
1.8. KOLMOGOROV‘S test and the law of the iterated logarithm
1.9. P. LEVY’S HOLDER condition
1.10. Approximating the BgowNian motion by a random walk
Chapter 2. BROWNian local times
2.1. The reflecting BRowNian motion
2.2. P. LEVY‘S local time
2.3. Elastic BgowNian motion
2.4. t+ and down-crossings
2.5. t+ as HAUSDORFF-BESICOVITCH 1/2-dimeional measure
Note 1: Submartingales
Note 2: HAUSDORFF measure and dimeion
2.6. Kxc’s formula for BRowNian funetionals
2.7. BESSEL processes
2.8. Standard BRowNian local time
2.9. BRowNian excuio
2.10. Application of the BESSEL process to BROWNian excuio
2.11. A time substitution
Chapter 3. The general t-dimeional diffusion
3.t. Definition
3.2. MARKOV times
3.3. Matching numbe
3.4. Singular points
3.5. Decomposing the general diffusion into simple pieces
3.6. GREEN operato and the spaceD
3.7. Generato
3.8. Generato continued
3.9. Stopped diffusion
Chapter 4. Generato
4.1. A general view
4.2. as local differential operator: coervative non-singular case
4.3. as local differential operator: general non-singular case
4.4. A second proof
4.5. at an isolated singular point
4.6. Solving
4.7. as global differential operator: non-singular case
4.8. on the shunts
4.9. as global differential operator: singular case
4.10. Passage times
Note 1: Differential processes with increasing paths
4.ft. Eigen-differential expaio for GREEN functio and traition
deities
4.12. KOLMOGOROV‘S test
Chapter 5. Time changes and killing
5.1. Cotruction of sample paths: a general view
5.2. Time changes
5.3. Time changes
5.4. Local times
5.5. Subordination and chain rule
5.6. Killing times
5.7. FELLER’S BROWNlan motio
5.8. IKEDA‘S example
5.9. Time substitutio must come from local time integrals
5.10. Shunts
5.11. Shunts with killing
5.12. Creation of mass
5.13. A parabolic equation
5.f4. Explosio
5.15. A non-linear parabolic equation
Chapter 6. Local and invee local times
6.1. Local and invee local times
6.2. LEVY measures
6.3. t and the intervals of [0, + ∞)
6.4. A counter example: t and the intervals of [0, +∞)
6.5a t and downcrossings
6.5b t as HAUSDORFF measure
6.5c t as diffusion
6.5d Excuio
6.6. Dimeion numbe
6.7. Comparison tests Noteion Dimeion numbe and fractional dimeional capacities
6.8. An individual ergodic theorem
Chapter 7. BRowNian motion in several dimeio
7.1. Diffusion in several dimeio
7.2. The standard BRowNian motion in several dimeio
7.3. Wandering out to oo
7.4. GREENian domai and GREEN functio
7.5. Excessive functio
7.6. Application to the spectrum of /1/2
7.7. Potentials and hitting probabilities
7.8. NEWTONian capacities
7.9. GAUSS’s quadratic form
7.10. WIENER‘S test
7.11. Applicatio of WIENER’S test
7.12. DIRICHLET problem
7.13. NEUHANN problem
7.14. Space-time BROWNian moticn
7.15. Spherical BROWNian motion and skew products
7.16. Spinning
7.17. An individual ergodic theorem for the standard 2-dimeional BROWNian motion
7.18. Covering BROWNian motio
7.19. Diffusio with BROWNian hitting probabilities
7.20. Right-continuous paths
7.21. RIESZ potentials
Chapter 8. A general view of diffusion in several dimeio
8.1. Similar diffusio
8.2. as differential operater
8.3. Time substitutio
8.4. Potentials
8.5. Boundaries
8.6. Elliptic operato
8.7. FELLER‘S little boundary and tail algebras
Bibliography
List of notatio
Index
目 录内容简介
对与扩散现象有关的随机过程产生持久而深刻的影响。不少数学家受益于《扩散过程及其样本轨道(英文版)》一维和多维扩散过程的描述和独到的布朗运动数学见解。传承这一系列书的风格,行文简洁流畅。每章节后面都配有问题并有部分解答,很适合作为教材和自学用书。目次:标准布朗运动;布朗局部时间;一般一维扩散;生成元;局部时间和逆时间序列;多维布朗运动;多维扩散简述。
比价列表
公众号、微信群

微信公众号

实时获取购书优惠