ContentsChapter l. Affine Connections 11. Connection on a Manifold 12. Covariant Differentiation and Parallel Translation Along a Curve 34. Exponential Mapping and Normal Neighborhoods 75. Whitehead Theorem 9Chapter 2. Covariant Differentiation. Curvature 141. Covariant Differentiation 142. The Case of Tensors of Type (r,1) 163. Torsion Tensor and Symmetric Connections 184. Geometric Meaning of the Symmetry of a Connection 205. Commutativity of Second Covariant Derivatives 216. Curvature Tensor of an Affine Connection 227. Space with Absolute Parallelism 249. Trace of the Curvature Tensor 2710.Ricci Tensor 27Chapter 3. Affine Mappings. Submanifolds 291. Affine Mappings 292. Affinities 323. Affine Coverings 334. Restriction of a Connection to a Submanifold 355. Induced Connection on a Normalized Submanifold 376. Gauss Formula and the Second Fundamental Form of a Normalized Submanifold 387. Totally Geodesic and Auto-Parallel Submanifolds 408. Normal Connection and the Weingarten Formula 429. Van der Waerden-Bortolotti Connection 42Chapter 4. Structural Equations. Local Symmetries 441. Torsion and Curvature Forms 442. Cartan Structural Equations in Polar Coordinates 473. Existence of Affine Local Mappings 504. Locally Symmetric Affine Connection Spaces 515. Local Geodesic Symmetries 536. Semisymmetric Spaces 54Chapter 5. Symmetric Spaces 551. Globally Symmetric Spaces 552. Germs of Smooth Mappings 553. Extensions of Affine Mappings 564. Uniqueness Theorem 585. Reduction of Locally Symmetric Spaces to Globally Symmetric Spaces 596. Properties of Symmetries in Globally Symmetric Spaces 607. Symmetric Spaces 628. Examples of Symmetric Spaces 629. Coincidence of Classes of Symmetric and Globally Symmetric Spaces 63Chapter 6. Connections on Lie Groups 671. Invariant Construction of the Canonical Connection 672. Morphisms of Symmetric Spaces as Affine Mappings 693. Left-Invariant Connections on a Lie Group 704. Cartan Connections 715. Left Cartan Connection 736. Right-Invariant Vector Fields 747. Right Cartan Connection 76Chapter 7. Lie Functor 771. Categories 772. Functors 783. Lie Functor 794. Kernel and Image of a Lie Group Homomorphism 805. Dynkin Polynomials 836. Dynkin Polynomials 837. Local Lie Groups 848. Bijectivity of the Lie Functor 85Chapter 8. Affine Fields and Related Topics 871. Affine Fields 872. Dimension of the Lie Algebra of Affine Fields 893. Completeness of Affine Fields 914. Mappings of Left and Right Translation on a Symmetric Space 945. Derivations on Manifolds with Multiplication 956. Lie Algebra of Derivations 967. Involutive Automorphism of the Derivation Algebra of a Symmetric Spaces 978. Symmetric Algebras and Lie Ternaries 989. Lie Ternary of a Symmetric Space 100Chapter 9. Cartan Theorem 1011. Functor s 1012. Comparison of the Functor s with the Lie Functor l 1033. Properties of the Functor slo44. Computation of the Lie Ternary of the Space 1055. Fundamental Group of the Quotient Space 1076. Symmetric Space with a Given Lie Ternary 1097. Coverings 1098. Cartan Theorem 1109. Identification of Homogeneous Spaces with Quotient Spaces 11110. Translations of a Symmetric Space 11211. Proof of the Cartan Theorem 112Chapterlo. Palais and Kobayashi Theorems 1141. Infinite-Dimensional Manifolds and Lie Groups 1142. Vector Fields Induced by a Lie Group Action 1143. Palais Theorem 1174. Kobayashi Theorem 1245. Affine Automorphism Group 1256. Automorphism Group of a Symmetric Space 1257. Translation Group of a Symmetric Space 126Chapter 11. Lagrangians in Riemannian Spaces 1271. Riemannian and Pseudo-Riemannian Spaces 1272. Naturanl Parameter 1423. Geodesics in a Riemannian Space 1334. Simplest Problem of the Calculus of Variations 1345. Euler-Lagrange Equations 1356. Minimum Curves and Extremals 1377. Regular Lagrangian 1398. Extremals of the Energy Lagrangian 139Chapter 12. Metric Properties of Geodesics 1411. Length of a Curve in a Riemannian Space 1412. Natural Parameter 1423. Riemannian Distance and Shortest Arcs 1424. Extremals of the Length Lagrangian 1435. Riemannian Voordinates 1446. Gauss Lemma 1457. Geodesics are Locally Shortest Arcs 1488. Smoothness of Shortest Arcs 1499. Local Existence of Shortest Arcs 150Chapter 13. Harmonic Functionals and Related Topics 1591. Riemannian Volume Element 1592. Discriminant Tensor 1593. Foss-Weyl Formula 1604. Vase n=2 1625. Laplace Operator on a Riemannian Space 1646. The Green Formulas 1657. Existence of Harmonic Functions with a Nonzero Differential 1668. Conjugate Harmonic Functions 170