国外电子与通信教材系列·射频电路设计:理论与应用(第2版)(英文版)

目 录内容简介
Chapter 1 Introduction 1
1.1 Importance of Radio Frequency Design 2
1.2 Dimensions and Units 5
1.3 Frequency Spectrum 7
1.4 RF Behavior of Passive Components 8
1.4.1 Resistors at High Frequency 13
1.4.2 Capacitors at High Frequency 15
1.4.3 Inductors at High Frequency 18
1.5 Chip Components and Circuit Board Considerations 20
1.5.1 Chip Resistors 20
1.5.2 Chip Capacitors 21
1.5.3 Surface-Mounted Inductors 22
1.6 RF Circuit Manufacturing Processes 22
1.7 Summary 25
Chapter 2 Transmission Line Analysis 33
2.1 Why Transmission Line Theory? 33
2.2 Examples of Transmission Lines 36
2.2.1 Two-Wire Lines 36
2.2.2 Coaxial Line 37
2.2.3 Microstrip Lines 37
2.3 Equivalent Circuit Representation 39
2.4 Theoretical Foundation 41
2.4.1 Basic Laws 41
2.5 Circuit Parameters for a Parallel-Plate Transmission Line 46
2.6 Summary of Different Line Configurations 49
2.7 General Transmission Line Equation 49
2.7.1 Kirchhoff Voltage and Current Law Representations 49
2.7.2 Traveling Voltage and Current Waves 53
2.7.3 Characteristic Impedance 53
2.7.4 Lossless Transmission Line Model 54
2.8 Microstrip Transmission Lines 54
2.9 Terminated Lossless Transmission Line 58
2.9.1 Voltage Reflection Coefficient 58
2.9.2 Propagation Constant and Phase Velocity 60
2.9.3 Standing Waves 60
2.10 Special Termination Conditions 63
2.10.1 Input Impedance of Terminated Lossless Line 63
2.10.2 Short-Circuit Terminated Transmission Line 64
2.10.3 Open-Circuited Transmission Line 66
2.10.4 Quarter-Wave Transmission Line 67
2.11 Sourced and Loaded Transmission Line 70
2.11.1 Phasor Representation of Source 70
2.11.2 Power Considerations for a Transmission Line 71
2.11.3 Input Impedance Matching 73
2.11.4 Return Loss and Insertion Loss 74
2.12 Summary 76
Chapter 3 The Smith Chart 83
3.1 From Reflection Coefficient to Load Impedance 83
3.1.1 Reflection Coefficient in Phasor Form 84
3.1.2 Normalized Impedance Equation 85
3.1.3 Parametric Reflection Coefficient Equation 86
3.1.4 Graphical Representation 89
3.2 Impedance Transformation 90
3.2.1 Impedance Transformation for General Load 90
3.2.2 Standing Wave Ratio 92
3.2.3 Special Transformation Conditions 93
3.2.4 Computer Simulations 97
3.3 Admittance Transformation 98
3.3.1 Parametric Admittance Equation 98
3.3.2 Additional Graphical Displays 101
3.4 Parallel and Series Connections 102
3.4.1 Parallel Connection of R and L Elements 102
3.4.2 Parallel Connection of R and C Elements 103
3.4.3 Series Connection of R and L Elements 103
3.4.4 Series Connection of R and C Elements 104
3.4.5 Example of a T-Network 105
3.5 Summary 109
Chapter 4 Single- and Multiport Networks 117
4.1 Basic Definitions 117
4.2 Interconnecting Networks 124
4.2.1 Series Connection of Networks 124
4.2.2 Parallel Connection of Networks 126
4.2.3 Cascading Networks 126
4.2.4 Summary of ABCD Network Representations 127
4.3 Network Properties and Applications 131
4.3.1 Interrelations between Parameter Sets 131
4.3.2 Analysis of Microwave Amplifier 132
4.4 Scattering Parameters 135
4.4.1 Definition of Scattering Parameters 136
4.4.2 Meaning of S-Parameters 138
4.4.3 Chain Scattering Matrix 140
4.4.4 Conversion between Z- and S-Parameters 142
4.4.5 Signal Flowgraph Modeling 143
4.4.6 Generalization of S-Parameters 148
4.4.7 Practical Measurements of S-Parameters 150
4.5 Summary 156
Chapter 5 An Overview of RF Filter Design 164
5.1 Basic Resonator and Filter Configurations 165
5.1.1 Filter Types and Parameters 165
5.1.2 Low-Pass Filter 168
5.1.3 High-Pass Filter 171
5.1.4 Bandpass and Bandstop Filters 172
5.1.5 Insertion Loss 177
5.2 Special Filter Realizations 180
5.2.1 Butterworth-Type Filters 180
5.2.2 Chebyshev-Type Filters 183
5.2.3 Denormalization of Standard Low-Pass Design 188
5.3 Filter Implementation 196
5.3.1 Unit Elements 197
5.3.2 Kuroda誷 Identities 198
5.3.3 Examples of Microstrip Filter Design 199
5.4 Coupled Filter 206
5.4.1 Odd and Even Mode Excitation 206
5.4.2 Bandpass Filter Section 209
5.4.3 Cascading Bandpass Filter Elements 210
5.4.4 Design Example 211
5.5 Summary 215
Chapter 6 Active RF Components 223
6.1 Semiconductor Basics 224
6.1.1 Physical Properties of Semiconductors 224
6.1.2 The pn-Junction 229
6.1.3 Schottky Contact 236
6.2 RF Diodes 239
6.2.1 Schottky Diode 239
6.2.2 PIN Diode 242
6.2.3 Varactor Diode 246
6.2.4 IMPATT Diode 248
6.2.5 Tunnel Diode 250
6.2.6 TRAPATT, BARRITT, and Gunn Diodes 251
6.3 Bipolar-Junction Transistor 252
6.3.1 Construction 252
6.3.2 Functionality 254
6.3.3 Frequency Response 259
6.3.4 Temperature Behavior 261
6.3.5 Limiting Values 264
6.3.6 Noise Performance 265
6.4 RF Field Effect Transistors 266
6.4.1 Construction 266
6.4.2 Functionality 267
6.4.3 Frequency Response 272
6.4.4 Limiting Values 272
6.5 Metal Oxide Semiconductor Transistors 273
6.5.1 Construction 273
6.5.2 Functionality 274
6.6 High Electron Mobility Transistors 275
6.6.1 Construction 276
6.6.2 Functionality 276
6.6.3 Frequency Response 279
6.7 Semiconductor Technology Trends 279
6.8 Summary 284
Chapter 7 Active RF Component Modeling 290
7.1 Diode Models 290
7.1.1 Nonlinear Diode Model 290
7.1.2 Linear Diode Model 293
7.2 Transistor Models 295
7.2.1 Large-Signal BJT Models 295
7.2.2 Small-Signal BJT Models 301
7.2.3 Large-Signal FET Models 311
7.2.4 Small-Signal FET Models 314
7.2.5 Transistor Amplifier Topologies 317
7.3 Measurement of Active Devices 318
7.3.1 DC Characterization of Bipolar Transistor 318
7.3.2 Measurements of AC Parameters of Bipolar Transistors 320
7.3.3 Measurements of Field Effect Transistor Parameters 323
7.4 Scattering Parameter Device Characterization 325
7.5 Summary 332
Chapter 8 Matching and Biasing Networks 338
8.1 Impedance Matching Using Discrete Components 338
8.1.1 Two-Component Matching Networks 338
8.1.2 Forbidden Regions, Frequency Response, and Quality Factor 346
8.1.3 T and Pi Matching Networks 354
8.2 Microstrip Line Matching Networks 357
8.2.1 From Discrete Components to Microstrip Lines 357
8.2.2 Single-Stub Matching Networks 360
8.2.3 Double-Stub Matching Networks 364
8.3 Amplifier Classes of Operation and Biasing Networks 366
8.3.1 Classes of Operation and Efficiency of Amplifiers 367
8.3.2 Bipolar Transistor Biasing Networks 371
8.3.3 Field Effect Transistor Biasing Networks 376
8.4 Summary 382
Chapter 9 RF Transistor Amplifier Design 387
9.1 Characteristics of Amplifiers 387
9.2 Amplifier Power Relations 388
9.2.1 RF Source 388
9.2.2 Transducer Power Gain 389
9.2.3 Additional Power Relations 390
9.3 Stability Considerations 392
9.3.1 Stability Circles 392
9.3.2 Unconditional Stability 395
9.3.3 Stabilization Methods 400
9.4 Constant Gain 402
9.4.1 Unilateral Design 402
9.4.2 Unilateral Figure of Merit 407
9.4.3 Bilateral Design 408
9.4.4 Operating and Available Power Gain Circles 411
9.5 Noise Figure Circles 416
9.6 Constant VSWR Circles 419
9.7 Broadband, High-Power, and Multistage Amplifiers 423
9.7.1 Broadband Amplifiers 423
9.7.2 High-Power Amplifiers 431
9.7.3 Multistage Amplifiers 434
9.8 Summary 440
Chapter 10 Oscillators and Mixers 446
10.1 Basic Oscillator Models 447
10.1.1 Feedback Oscillator 447
10.1.2 Negative Resistance Oscillator 448
10.1.3 Oscillator Phase Noise 458
10.1.4 Feedback Oscillator Design 463
10.1.5 Design Steps 465
10.1.6 Quartz Oscillators 468
10.2 High-Frequency Oscillator Configuration 470
10.2.1 Fixed-Frequency Oscillators 473
10.2.2 Dielectric Resonator Oscillators 478
10.2.3 YIG-Tuned Oscillator 482
10.2.4 Voltage-Controlled Oscillator 483
10.2.5 Gunn Element Oscillator 485
10.3 Basic Characteristics of Mixers 486
10.3.1 Basic Concepts 487
10.3.2 Frequency Domain Considerations 489
10.3.3 Single-Ended Mixer Design 490
10.3.4 Single-Balanced Mixer 497
10.3.5 Double-Balanced Mixer 498
10.3.6 Integrated Active Mixers 498
10.3.7 Image Reject Mixer 502
10.4 Summary 512
Appendix A Useful Physical Quantities and Units 517
Appendix B Skin Equation for a Cylindrical Conductor 522
Appendix C Complex Numbers 525
Appendix D Matrix Conversions 527
Appendix E Physical Parameters of Semiconductors 530
Appendix F Long and Short Diode Models 531
Appendix G Couplers 534
Appendix H Noise Analysis 540
Appendix I Introduction to MATLAB 549
1.1 Importance of Radio Frequency Design 2
1.2 Dimensions and Units 5
1.3 Frequency Spectrum 7
1.4 RF Behavior of Passive Components 8
1.4.1 Resistors at High Frequency 13
1.4.2 Capacitors at High Frequency 15
1.4.3 Inductors at High Frequency 18
1.5 Chip Components and Circuit Board Considerations 20
1.5.1 Chip Resistors 20
1.5.2 Chip Capacitors 21
1.5.3 Surface-Mounted Inductors 22
1.6 RF Circuit Manufacturing Processes 22
1.7 Summary 25
Chapter 2 Transmission Line Analysis 33
2.1 Why Transmission Line Theory? 33
2.2 Examples of Transmission Lines 36
2.2.1 Two-Wire Lines 36
2.2.2 Coaxial Line 37
2.2.3 Microstrip Lines 37
2.3 Equivalent Circuit Representation 39
2.4 Theoretical Foundation 41
2.4.1 Basic Laws 41
2.5 Circuit Parameters for a Parallel-Plate Transmission Line 46
2.6 Summary of Different Line Configurations 49
2.7 General Transmission Line Equation 49
2.7.1 Kirchhoff Voltage and Current Law Representations 49
2.7.2 Traveling Voltage and Current Waves 53
2.7.3 Characteristic Impedance 53
2.7.4 Lossless Transmission Line Model 54
2.8 Microstrip Transmission Lines 54
2.9 Terminated Lossless Transmission Line 58
2.9.1 Voltage Reflection Coefficient 58
2.9.2 Propagation Constant and Phase Velocity 60
2.9.3 Standing Waves 60
2.10 Special Termination Conditions 63
2.10.1 Input Impedance of Terminated Lossless Line 63
2.10.2 Short-Circuit Terminated Transmission Line 64
2.10.3 Open-Circuited Transmission Line 66
2.10.4 Quarter-Wave Transmission Line 67
2.11 Sourced and Loaded Transmission Line 70
2.11.1 Phasor Representation of Source 70
2.11.2 Power Considerations for a Transmission Line 71
2.11.3 Input Impedance Matching 73
2.11.4 Return Loss and Insertion Loss 74
2.12 Summary 76
Chapter 3 The Smith Chart 83
3.1 From Reflection Coefficient to Load Impedance 83
3.1.1 Reflection Coefficient in Phasor Form 84
3.1.2 Normalized Impedance Equation 85
3.1.3 Parametric Reflection Coefficient Equation 86
3.1.4 Graphical Representation 89
3.2 Impedance Transformation 90
3.2.1 Impedance Transformation for General Load 90
3.2.2 Standing Wave Ratio 92
3.2.3 Special Transformation Conditions 93
3.2.4 Computer Simulations 97
3.3 Admittance Transformation 98
3.3.1 Parametric Admittance Equation 98
3.3.2 Additional Graphical Displays 101
3.4 Parallel and Series Connections 102
3.4.1 Parallel Connection of R and L Elements 102
3.4.2 Parallel Connection of R and C Elements 103
3.4.3 Series Connection of R and L Elements 103
3.4.4 Series Connection of R and C Elements 104
3.4.5 Example of a T-Network 105
3.5 Summary 109
Chapter 4 Single- and Multiport Networks 117
4.1 Basic Definitions 117
4.2 Interconnecting Networks 124
4.2.1 Series Connection of Networks 124
4.2.2 Parallel Connection of Networks 126
4.2.3 Cascading Networks 126
4.2.4 Summary of ABCD Network Representations 127
4.3 Network Properties and Applications 131
4.3.1 Interrelations between Parameter Sets 131
4.3.2 Analysis of Microwave Amplifier 132
4.4 Scattering Parameters 135
4.4.1 Definition of Scattering Parameters 136
4.4.2 Meaning of S-Parameters 138
4.4.3 Chain Scattering Matrix 140
4.4.4 Conversion between Z- and S-Parameters 142
4.4.5 Signal Flowgraph Modeling 143
4.4.6 Generalization of S-Parameters 148
4.4.7 Practical Measurements of S-Parameters 150
4.5 Summary 156
Chapter 5 An Overview of RF Filter Design 164
5.1 Basic Resonator and Filter Configurations 165
5.1.1 Filter Types and Parameters 165
5.1.2 Low-Pass Filter 168
5.1.3 High-Pass Filter 171
5.1.4 Bandpass and Bandstop Filters 172
5.1.5 Insertion Loss 177
5.2 Special Filter Realizations 180
5.2.1 Butterworth-Type Filters 180
5.2.2 Chebyshev-Type Filters 183
5.2.3 Denormalization of Standard Low-Pass Design 188
5.3 Filter Implementation 196
5.3.1 Unit Elements 197
5.3.2 Kuroda誷 Identities 198
5.3.3 Examples of Microstrip Filter Design 199
5.4 Coupled Filter 206
5.4.1 Odd and Even Mode Excitation 206
5.4.2 Bandpass Filter Section 209
5.4.3 Cascading Bandpass Filter Elements 210
5.4.4 Design Example 211
5.5 Summary 215
Chapter 6 Active RF Components 223
6.1 Semiconductor Basics 224
6.1.1 Physical Properties of Semiconductors 224
6.1.2 The pn-Junction 229
6.1.3 Schottky Contact 236
6.2 RF Diodes 239
6.2.1 Schottky Diode 239
6.2.2 PIN Diode 242
6.2.3 Varactor Diode 246
6.2.4 IMPATT Diode 248
6.2.5 Tunnel Diode 250
6.2.6 TRAPATT, BARRITT, and Gunn Diodes 251
6.3 Bipolar-Junction Transistor 252
6.3.1 Construction 252
6.3.2 Functionality 254
6.3.3 Frequency Response 259
6.3.4 Temperature Behavior 261
6.3.5 Limiting Values 264
6.3.6 Noise Performance 265
6.4 RF Field Effect Transistors 266
6.4.1 Construction 266
6.4.2 Functionality 267
6.4.3 Frequency Response 272
6.4.4 Limiting Values 272
6.5 Metal Oxide Semiconductor Transistors 273
6.5.1 Construction 273
6.5.2 Functionality 274
6.6 High Electron Mobility Transistors 275
6.6.1 Construction 276
6.6.2 Functionality 276
6.6.3 Frequency Response 279
6.7 Semiconductor Technology Trends 279
6.8 Summary 284
Chapter 7 Active RF Component Modeling 290
7.1 Diode Models 290
7.1.1 Nonlinear Diode Model 290
7.1.2 Linear Diode Model 293
7.2 Transistor Models 295
7.2.1 Large-Signal BJT Models 295
7.2.2 Small-Signal BJT Models 301
7.2.3 Large-Signal FET Models 311
7.2.4 Small-Signal FET Models 314
7.2.5 Transistor Amplifier Topologies 317
7.3 Measurement of Active Devices 318
7.3.1 DC Characterization of Bipolar Transistor 318
7.3.2 Measurements of AC Parameters of Bipolar Transistors 320
7.3.3 Measurements of Field Effect Transistor Parameters 323
7.4 Scattering Parameter Device Characterization 325
7.5 Summary 332
Chapter 8 Matching and Biasing Networks 338
8.1 Impedance Matching Using Discrete Components 338
8.1.1 Two-Component Matching Networks 338
8.1.2 Forbidden Regions, Frequency Response, and Quality Factor 346
8.1.3 T and Pi Matching Networks 354
8.2 Microstrip Line Matching Networks 357
8.2.1 From Discrete Components to Microstrip Lines 357
8.2.2 Single-Stub Matching Networks 360
8.2.3 Double-Stub Matching Networks 364
8.3 Amplifier Classes of Operation and Biasing Networks 366
8.3.1 Classes of Operation and Efficiency of Amplifiers 367
8.3.2 Bipolar Transistor Biasing Networks 371
8.3.3 Field Effect Transistor Biasing Networks 376
8.4 Summary 382
Chapter 9 RF Transistor Amplifier Design 387
9.1 Characteristics of Amplifiers 387
9.2 Amplifier Power Relations 388
9.2.1 RF Source 388
9.2.2 Transducer Power Gain 389
9.2.3 Additional Power Relations 390
9.3 Stability Considerations 392
9.3.1 Stability Circles 392
9.3.2 Unconditional Stability 395
9.3.3 Stabilization Methods 400
9.4 Constant Gain 402
9.4.1 Unilateral Design 402
9.4.2 Unilateral Figure of Merit 407
9.4.3 Bilateral Design 408
9.4.4 Operating and Available Power Gain Circles 411
9.5 Noise Figure Circles 416
9.6 Constant VSWR Circles 419
9.7 Broadband, High-Power, and Multistage Amplifiers 423
9.7.1 Broadband Amplifiers 423
9.7.2 High-Power Amplifiers 431
9.7.3 Multistage Amplifiers 434
9.8 Summary 440
Chapter 10 Oscillators and Mixers 446
10.1 Basic Oscillator Models 447
10.1.1 Feedback Oscillator 447
10.1.2 Negative Resistance Oscillator 448
10.1.3 Oscillator Phase Noise 458
10.1.4 Feedback Oscillator Design 463
10.1.5 Design Steps 465
10.1.6 Quartz Oscillators 468
10.2 High-Frequency Oscillator Configuration 470
10.2.1 Fixed-Frequency Oscillators 473
10.2.2 Dielectric Resonator Oscillators 478
10.2.3 YIG-Tuned Oscillator 482
10.2.4 Voltage-Controlled Oscillator 483
10.2.5 Gunn Element Oscillator 485
10.3 Basic Characteristics of Mixers 486
10.3.1 Basic Concepts 487
10.3.2 Frequency Domain Considerations 489
10.3.3 Single-Ended Mixer Design 490
10.3.4 Single-Balanced Mixer 497
10.3.5 Double-Balanced Mixer 498
10.3.6 Integrated Active Mixers 498
10.3.7 Image Reject Mixer 502
10.4 Summary 512
Appendix A Useful Physical Quantities and Units 517
Appendix B Skin Equation for a Cylindrical Conductor 522
Appendix C Complex Numbers 525
Appendix D Matrix Conversions 527
Appendix E Physical Parameters of Semiconductors 530
Appendix F Long and Short Diode Models 531
Appendix G Couplers 534
Appendix H Noise Analysis 540
Appendix I Introduction to MATLAB 549
目 录内容简介
《射频电路设计:理论与应用(第2版)(英文版)》从低频电路理论到射频、微波电路理论的演化过程出发,讨论以低频电路理论为基础并结合高频电压、电流的波动特征来分析和设计射频、微波系统的方法——微波等效电路法,使不具备电磁场理论和微波技术背景的读者也能了解和掌握射频、微波电路的基本设计原则和方法。全书共10章,涵盖传输线、匹配器、滤波器、混频器、放大器和振荡器等主要射频微波系统单元的理论分析和设计问题及电路分析工具(圆图、网络参量和信号流图)。书中例题非常有实用价值。《射频电路设计:理论与应用(第2版)(英文版)》大多数电路都经过ADS仿真,并提供标准MATLAB计算程序。
比价列表
公众号、微信群

微信公众号

实时获取购书优惠