MATRICES AND SYSTEMS OF LINEAR EQUATIONS
1.1 Introduction to Matrices and Systems of Linear Equatio
1.2 Echelon Form and Gauss-Jordan Elimination
1.3 Co istent Systems of Linear Equatio
1.4 Applicatio (Optional)
1.5 Matrix Operatio
1.6 Algebraic Properties of Matrix Operatio
1.7 Linear Independence and No ingular Matrices
1.8 Data Fitting, Numerical Integration, and Numerical Differentiation (Optional)
1.9 Matrix Inve es and Their Properties
VECTORS IN 2-SPACE AND 3-SPACE
2.1 Vecto in the Plane
2.2 Vecto in Space
2.3 The Dot Product and the Cross Product
2.4 Lines and Planes in Space
THE VECTOR SPACE Rn
3.1 Introduction
3.2 Vector Space Properties of Rn
3.3 Examples of Subspaces
3.4 Bases for Subspaces
3.5 Dime ion
3.6 Orthogonal Bases for Subspaces
3.7 Linear Tra formatio from Rn to Rm
3.8 Least-Squares Solutio to Inco istent Systems, with Applicatio to Data Fitting
3.9 Theory and Practice of Least Squares
THE EIGENVALUE PROBLEM
4.1 The Eigenvalue Problem for (2x2) Matrices
4.2 Determinants and the Eigenvalue Problem
4.3 Elementary Operatio and Determinants (Optional)
4.4 Eigenvalues and the Characteristic Polynomial
4.5 Eigenvecto and Eige paces
4.6 Complex Eigenvalues and Eigenvecto
4.7 Similarity Tra formatio and Diagonalization
4.8 Difference Equatio ; Markov Chai ; Systems of Differential Equatio (Optional)
VECTOR SPACES AND LINEAR TRANSFORMATIONS
5.1 Introduction
5.2 Vector Spaces
5.3 Subspaces
5.4 Linear Independence, Bases, and Coordinates
5.5 Dime ion
5.6 Inner-Product Spaces, Orthogonal Bases, and Projectio (Optional)
5.7 Linear Tra formatio
5.8 Operatio with Linear Tra formatio
5.9 Matrix Representatio for Linear Tra formatio
5.10 Change of Basis and Diagonalization
DETERMINANTS
6.1 Introduction
6.2 Cofactor Expa io of Determinants
6.3 Elementary Operatio and Determinants
6.4 Cramer's Rule
6.5 Applicatio of Determinants: Inve es and Wronksia
EIGENVALUES AND APPLICATIONS
7.1 Quadratic Forms
7.2 Systems of Differential Equatio
7.3 Tra formation to Hessenberg Form
7.4 Eigenvalues of Hessenberg Matrices
7.5 Householder Tra formatio
7.6 The QR Factorization and Least-Squares Solutio
7.7 Matrix Polynomials and the Cayley-Hamilton Theorem
7.8 Generalized Eigenvecto and Solutio of Systems of Differential Equatio
APPENDIX: AN INTRODUCTION TO MATLAB
ANSWERS TO SELECTED ODD-NUMBERED EXERCISES
INDEX