1 绪论
1.1 数值分析的对象和特点
1.2 误差的基本概念
1.2.1 误差的来源
1.2.2 绝对误差
1.2.3 相对误差
1.2.4 有效数
1.2.5 数据误差对函数值的影响
1.3 机器数系
1.3.1 机器数系
1.3.2 机器数系的运算及误差估计
1.4 数值稳定问题
14.1 数值稳定性
1.4.2 良态问题与病态问题
1.4.3 简化计算步骤,减少运算次数
习题1
2 非线性方程的解法
2.1 概述
2.1.1 根的搜索
2.1.2 二分法
2.2 简单迭代法
2.2.1 迭代格式的构造
2.2.2 迭代法的收敛性
2.2.3 迭代法的收敛速度
2.2.4 Aitken加速法
2.3 Newton法
2.3.1 Newton迭代格式及其几何意义
2.3.2 局部收敛
2.3.3 求重根的修正Newton法
2.3.4 大范围收敛
2.3.5 Newton法的变形
2.4 多项式方程的求根
2.4.1 实系数多项式零点的分布
2.4.2 劈因子法
2.5 应用实例:薄壳结构的静力计算
2.5.1 问题的背景
2.5.2 数学模型
2.5.3 计算方法与结果分析
习题2
3 线性代数方程组数值解法
3.1 引言
3.2 消去法
3.2.1 三角方程组的解法
3.2.2 Gauss消去法
3.2.3 追赶法
3.2.4 列主元Gauss消去法
3.3 矩阵的直接分解法
3.3.1 矩阵的直接分解法
3.3.2 对称矩阵的直接分解法
3.3.3 列主元的三角分解法
3.4 方程组的性态与误差分析
3.4.1 向量范数
3.4.2 矩阵范数
3.4.3 方程组的性态及条件数
3.4.4 方程组近似解可靠性的判别
3.5 迭代法
3.5.1 迭代格式的一般形式
3.5.2 几个常用的迭代格式
3.5.3 迭代格式的收敛性
3.6 幂法及反幂法
3.6.1 求主特征值的幂法
3.6.2 反幂法
3.7 应用实例:纯电阻型立体电路分析
3.7.1 问题的背景
3.7.2 数学模型
……
4 多项式插值与函数最佳逼近
5 数值积分与数值微分
6 常微分方程数值解法
7 偏微分议程数值解法
习题参考答案
参考文献