常微分方程及其应用:理论与模型

目 录内容简介
ContentsChapter 1 First-order Dierential Equations 11.1 Introduction 1Exercise 1.1 71.2 First-order Linear Dierential Equations 81.2.1 First-order Homogeneous Linear Dierential Equations 81.2.2 First-order Nonhomogeneous Linear Dierential Equations 111.2.3 Bernoulli Equations 16Exercise 1.2 181.3 Separable Equations 191.3.1 Separable Equations 191.3.2 Homogeneous Equations 23Exercise 1.3 261.4 Applications 27Module 1 The Spread of Technological Innovations 27Module 2 The Van Meegeren Art Forgeries 301.5 Exact Equations 351.5.1 Criterion for Exactness 351.5.2 Integrating Factor 39Exercise 1.5 421.6 Existence and Uniqueness of Solutions 43Exercise 1.6 50Chapter 2 Second-order Dierential Equations 512.1 General Solutions of Homogeneous Second-order Linear Equations 51Exercise 2.1 592.2 Homogeneous Second-order Linear Equations with Constant Coe±cients 602.2.1 The Characteristic Equation Has Distinct Real Roots 612.2.2 The Characteristic Equation Has Repeated Roots 622.2.3 The Characteristic Equation Has Complex Conjugate Roots 63Exercise 2.2 652.3 Nonhomogeneous Second-order Linear Equations 662.3.1 Structure of General Solutions 662.3.2 Method of Variation of Parameters 682.3.3 Methods for Some Special Form of the Nonhomogeneous Term g(t) 70Exercise 2.3 762.4 Applications 77Module 1 An Atomic Waste Disposal Problem 77Module 2 Mechanical Vibrations 82Chapter 3 Linear Systems of Dierential Equations 903.1 Basic Concepts and Theorems 90Exercise 3.1 983.2 The Eigenvalue-Eigenvector Method of Finding Solutions 993.2.1 The Characteristic Polynomial of A Has n Distinct Real Eigenvalues 1003.2.2 The Characteristic Polynomial of A Has Complex Eigenvalues 1013.2.3 The Characteristic Polynomial of A Has Equal Eigenvalues 104Exercise 3.2 1083.3 Fundamental Matrix Solution; Matrix-valued Exponential Function eAt 109Exercise 3.3 1133.4 Nonhomogeneous Equations; Variation of Parameters 115Exercise 3.4 1203.5 Applications 121Module 1 The Principle of Competitive Exclusion in Population Biology 121Module 2 A Model for the Blood Glucose Regular System 127Chapter 4 Laplace Transforms and Their Applications in Solving Dierential Equations 1364.1 Laplace Transforms 136Exercise 4.1 1384.2 Properties of Laplace Transforms 138Exercise 4.2 1454.3 Inverse Laplace Transforms 146Exercise 4.3 1484.4 Solving Dierential Equations by Laplace Transforms 1484.4.1 The Right-Hand Side of the Dierential Equation is Discontinuous 1524.4.2 The Right-Hand Side of Dierential Equation is an Impulsive Function 154Exercise 4.4 1564.5 Solving Systems of Dierential Equations by Laplace Transforms 157Exercise 4.5 159Chapter 5 Introduction to the Stability Theory 1615.1 Introduction 161Exercise 5.1 1645.2 Stability of the Solutions of Linear System 164Exercise 5.2 1715.3 Geometrical Characteristics of Solutions of the System of Dierential Equations 1735.3.1 Phase Space and Direction Field 1735.3.2 Geometric Characteristics of the Orbits near a Singular Point 1765.3.3 Stability of Singular Points 180Exercise 5.3 1835.4 Applications 183Module 1 Volterra's Principle 183Module 2 Mathematical Theories of War 188Answers to Selected Exercises 196References 209附录 软件包Iode简介 210
目 录内容简介
《常微分方程及其应用——理论与模型》是常微分方程课程的英文教材,是作者结合多年的双语教学经验编写而成。《常微分方程及其应用——理论与模型》共5章,包括一阶线性微分方程,高阶线性微分方程,线性微分方程组,Laplace变换及其在微分方程求解中的应用,以及微分方程的稳定性理论。《常微分方程及其应用——理论与模型》配有大量的应用实例和用Matlab软件绘制的微分方程解的相图,并介绍了绘制相图的程序。
比价列表
公众号、微信群

微信公众号

实时获取购书优惠