上篇 基础理论篇
第1章 软计算概述
1.1 软计算基本概念
1.2 软计算与人工智能的关系
1.2.1 从传统人工智能到计算智能
1.2.2 软计算对计算智能的意义
1.3 软计算方法的广义模糊认知哲学基础
1.4 小结
习题1
第2章 模糊计算
2.1 模糊集合
2.1.1 模糊集合概念
2.1.2 隶属函数
2.1.3 模糊集合运算
2.1.4 模糊集合与普通集合的关系
2.2 模糊关系
2.2.1 模糊关系基本概念
2.2.2 模糊关系合成
2.2.3 模糊变换
2.3 模糊推理
2.3.1 模糊语言与语言变量
2.3.2 c模糊命题与模糊条件语句
2.3.3 模糊推理
2.4 模糊计算在工程技术中的应用实例
2.4.1 模糊控制系统的原理与设计过程
2.4.2 模糊控制在电饭锅中的应用
2.4.3 模糊优化研究进展
2.5 粗糙集方法简介
2.6 小结
习题2
第3章 神经计算
3.1 神经网络基本概念
3.2 神经网络类型
3.3 神经网络学习算法
3.4 几种典型的神经网络
3.4.1 生物神经元模型
3.4.2 人工神经元模型
3.4.3 BP网络
3.4.4 Hopfield网络
3.5 神经计算在工程技术中的应用实例
3.5.1 神经网络控制的结构
3.5.2 神经控制在复杂系统中的应用
3.6 小结
习题3
第4章 进化计算
4.1 遗传算法
4.1.1 遗传算法基础理论
4.1.2 遗传算法研究进展
4.2 进化策略简介
4.3 进化编程简介
4.4 进化计算在工程技术中的应用实例
4.4.1 组织协同进化分类算法
4.4.2 AGAFCM算法
4.4.3 遗传算法在模糊控制中的应用
4.5 小结
习题4
第5章 免疫计算
5.1 人工免疫系统的生物学原理
5.1.1 生物免疫学的发展
5.1.2 生物免疫系统概述
5.1.3 生物免疫原理
5.1.4 生物免疫系统对人工免疫系统研究的启示
5.2 人工免疫算法
5.2.1 从生物免疫系统到人工免疫系统
5.2.2 典型的人工免疫算法
5.3 小结
习题5
第6章 自然计算
6.1 自然计算产生背景
6.1.1 生物系统
6.1.2 生态系统
6.2 自然计算相关概念
6.2.1 基本概念
6.2.2 主要研究领域
6.3 自然计算基本特征
6.3.1 从人工智能到自然计算
6.3.2 自然计算的新特征
6.4 自然计算算法原理
6.4.1 自然计算映射模型
6.4.2 自然计算算法
6.5 协同进化计算的自然计算理念求证
6.5.1 协同进化的生物学基础
6.5.2 协同进化的动力学描述
6.6 自然计算研究整体框架
6.7 小结
习题6
第7章 其他软计算方法
7.1 群集智能
7.1.1 蚁群算法
7.1.2 粒子群算法
7.1.3 集群智能与其他计算智能的比较
7.2 量子计算
7.3 支持向量机
7.4 小结
习题7
下篇综合应用篇
第8章 模糊计算在复杂工业系统中的应用
8.1 基于遗传算法的第二类模糊非线性规划问题求解
8.1.1 第二类模糊非线性规划问题描述
8.1.2 FRNLP模型的常规容差法最优模糊判决及求解
8.1.3 FRNLP模型的满意解和精确最优解
8.1.4 遗传算法在非线性规划上的运用
8.1.5 实验仿真
8.1.6 结论
8.2 基于遗传算法的动态模糊聚类
8.2.1 模糊聚类基本概念
8.2.2 将遗传算法用于迭代优化映射平面的坐标
8.2.3 实验仿真
8.2.4 结论
8.3 模糊计算在洗衣机控制系统中的应用
8.3.1 模糊神经控制的知识基础
8.3.2 基于模糊神经网络的洗衣机控制
系统的设计
8.3.3 洗衣机模糊神经控制系统的实现
8.3.4 结论
8.4 小结
习题8
第9章 遗传算法在医学图像配准中的应用
9.1 医学图像配准研究背景
9.1.1 医学图像配准的意义
9.1.2 医学图像配准技术的发展历史
9.1.3 医学图像配准技术在临床上的应用
9.1.4 医学图像配准技术存在的问题
9.2 医学图像配准技术综述
9.2.1 图像配准的基本原理及概念
9.2.2 图像配准方法的分类
9.2.3 图像配准的主要过程
9.2.4 主要的医学图像配准方法
9.2.5 配准的评估
9.3 基于互信息的医学图像配准
9.3.1 基本概念
9.3.2 互信息配准的基本步骤
9.4 互信息局部极值的成因及抑制方法
第10章 人工免疫在故障诊断中的应用
第11章 自然计算在系统辨识中的应用
参考文献