国际知名大学原版教材·信息技术学科与电气工程学科系列:影印 动态系统的数字控制(第3版)

作者:Gene F.Franklin,J.David Powell 著
出版:培生教育出版集团,清华大学出版社 2001.9
页数:742
定价:59.00 元
ISBN-10:7302047472
ISBN-13:9787302047476 去豆瓣看看
出版:培生教育出版集团,清华大学出版社 2001.9
页数:742
定价:59.00 元
ISBN-10:7302047472
ISBN-13:9787302047476 去豆瓣看看
目 录内容简介
Preface xix
1 Introduction
1.1 Problem Definition
1.2 Overview of Design Approach
1.3 Computer-Aided Design
1.4 Suggestions for Further Reading
1.5 Summary
1.6 Problems
2 Review of Continuous Control
2.1 Dynamic Response
2.1.1 Differential Equations
2.l.2 Laplace Transforms and Transfer Functions
2.1.3 Output Time Histories
2.1.4 The Final Value Theorem
2.1.5 Block Diagrams
2.1.6 Response versus Pole Locations
2.1.7 Time-Domain Specifications
2.2 Basic Properties of Feedback
2.2.1 Stability
2.2.2 Steady-State Errors
2.2.3 PID Control
2.3 Root Locus
2.3.1 Problem Definition
2.3.2 Root Locus Drawing Rules
2.3.3 Computer-Aided Loci
2.4 Frequency Response Design
2.4.1 Specifications
2.4.2 Bode Plot Techniques
2.4.3 Steady-State Errors
2.4.4 Stability Margins
2.4.5 Bode’s Gain-Phase Relationship
2.4.6 Design
2.5 Compensation
2.6 State-Space Design
2.6.1 Control Law
2.6.2 Estimator Design
2.6.3 Compensation: Combined Control and Estimation
2.6.4 Reference Input
2.6.5 Integral Control
2.7 Summary
2.8 Problems
3 Introductory Digital Control
3.1 Digitization
3.2 Effect of Sampling
3.3 PID Control
3.4 Summary
3.5 Problems
4 Discrete Systems Analysis
4.1 Linear Difference Equations
4.2 The Discrete Transfer Function
4.2.1 The z-Transform
4.2.2 The Transfer Function
4.2.3 Block Diagrams and State-Variable Descriptions
4.2.4 Relation of Transfer Function to Pulse Response
4.2.5 External Stability
4.3 Discrete Models of Sampled-Data Systems
4.3.1 Using the z-Transform
4.3.2 *Continuous Time Delay
4.3.3 State-Space Form
4.3.4 *State-Space Models for Systems with Delay
4.3.5 *Numerical Considerations in Computing ?and ?
4.3.6 *Nonlinear Models
4.4 Signal Analysis and Dynamic Response
4.4.1 The Unit Pulse
4.4.2 The Unit Step
4.4.3 Exponential
4.4.4 General Sinusoid
4.4.5 Correspondence with Continuous Signals
4.4.6 Step Response
4.5 Frequency Response
4.5.1 *The Discrete Fourier Transform (DFT)
4.6 Properties of the z-Transform
4.6.1 Essential Properties
4.6.2 *Convergence of z-Transform
4.6.3 *Another Derivation of the Transfer Function
4.7 Summary
4.8 Problems
5 Sampled-Data Systems
5.1 Analysis of the Sample and Hold
5.2 Spectrum of a Sampled Signal
5.3 Data Extrapolation
5.4 Block-Diagram Analysis of Sampled-Data Systems
5.5 Calculating the System Output Between Samples: The Ripple
5.6 Summary
5.7 Problems
5.8 Appendix
6 Discrete Equivalents
6.l Design of Discrete Equivalents via Numerical Integration
6.2 Zero-Pole Matching Equivalents
6.3 Hold Equivalents
6.3.1 Zero-Order Hold Equivalent
6.3.2 A Non-Causal First-Order-Hold Equivalent The Triangle-Hold Equivalent
6.4 Summary
6.5 Problems
7 Design Using Transform Techniques
7.1 System Specifications
7.2 Design by Emulation
7.2.1 Discrete Equivalent Controllers
7.2.2 Evaluation of the Design
7.3 Direct Design by Root Locus in the z-Plane
7.3.1 z-Plane Specifications
7.3.2 The Discrete Root Locus
7.4 Frequency Response Methods
7.4.1 Nyquist Stability Criterion
7.4.2 Design Specifications in the Frequency Domain
7.4.3 Low Frequency Gains and Error Coefficents
7.4.4 Compensator Design
7.5 Direct Design Method of Ragazzini
7.6 Summary
7.7 Problems
8 Design Using State-Space Methods
8.1 Control Law Design
8.1.1 Pole Placement
8.1.2 Controllability
8.1.3 Pole Placement Using CACSD
8.2 Estimator Design
8.2.1 Prediction Estimators
8.2.2 Observability
8.2.3 Pole Placement Using CACSD
8.2.4 Current Estimators
8.2.5 Reduced-Order Estimators
8.3 Regulator Design: Combined Control Law and Estimator
8.3.1 The Separation Principle
8.3.2 Guidelines for Pole Placement
8.4 Introduction of the Reference Input
8.4.1 Reference Inputs for Full-State Feedback
8.4.2 Reference Inputs with Estimators: The State-Command Structure
8.4.3 Output Error Command
8.4.4 A Comparison of the Estimator Structure and Classical Methods
8.5 Integral Control and Disturbance Estimation
8.5.1 Integral Control by State Augmentation
8.5.2 Disturbance Estimation
8.6 Effect of Delays
8.6.l Sensor Delays
8.6.2 Actuator Delays
8.7 *Controllability and Observability
8.8 Summary
8.9 Problems
9 Multivariable and Optimal Control
9.1 Decoupling
9.2 Time-Varying Optimal Control
9.3 LQR Steady-State Optimal Control
9.3.1 Reciprocal Root Properties
9.3.2 Symmetric Root Locus
9.3.3 Eigenvector Decomposition
9.3.4 Cost Equivalents
9.3.5 Emulation by Equivalent Cost
9.4 Optimal Estimation
9.4.1 Least-5quares Estimation
9.4.2 The Kalman Filter
9.4.3 Steady-State Optimal Estimation
9.4.4 Noise Matrices and Discrete Equivalents
9.5 Multivariable Control Design
9.5.1 Selection of Weighting Matrices Q1 and Q2
9.5.2 Pincer Procedure
9.5.3 Paper-Machine Design Example
9.5.4 Magnetic-Tape-Drive Design Example
9.6 Summary
9.7 Problems
10 Quantization Effects
10.1 Analysis of Round-Off Error
10.2 Effects of Parameter Round-Off
10.3 Limit Cycles and Dither
10.4 Summary
10.5 Problems
11 Sample Rate Selection
11.1 The Sampling Theorem’s Limit
11.2 Time Response and Smoothness
11.3 Errors Due to Random Plant Disturbances
11.4 Sensitivity to Parameter Variations
11.5 Measurement Noise and Antialiasing Filters
11.6 Multirate Sampling
11.7 Summary
11.8 Problems
12 system Identification
13 Nonlinear Control
14 Design of a disk drive servo:A case study
Appendix A Examples
Appendix B Tables
Appendix C A few results from matrix analysis
Appendix D summary of facts from the theory of probability
Appendix E matlab functions
Appendix F Differences between matlab v5 and v4
references
index
1 Introduction
1.1 Problem Definition
1.2 Overview of Design Approach
1.3 Computer-Aided Design
1.4 Suggestions for Further Reading
1.5 Summary
1.6 Problems
2 Review of Continuous Control
2.1 Dynamic Response
2.1.1 Differential Equations
2.l.2 Laplace Transforms and Transfer Functions
2.1.3 Output Time Histories
2.1.4 The Final Value Theorem
2.1.5 Block Diagrams
2.1.6 Response versus Pole Locations
2.1.7 Time-Domain Specifications
2.2 Basic Properties of Feedback
2.2.1 Stability
2.2.2 Steady-State Errors
2.2.3 PID Control
2.3 Root Locus
2.3.1 Problem Definition
2.3.2 Root Locus Drawing Rules
2.3.3 Computer-Aided Loci
2.4 Frequency Response Design
2.4.1 Specifications
2.4.2 Bode Plot Techniques
2.4.3 Steady-State Errors
2.4.4 Stability Margins
2.4.5 Bode’s Gain-Phase Relationship
2.4.6 Design
2.5 Compensation
2.6 State-Space Design
2.6.1 Control Law
2.6.2 Estimator Design
2.6.3 Compensation: Combined Control and Estimation
2.6.4 Reference Input
2.6.5 Integral Control
2.7 Summary
2.8 Problems
3 Introductory Digital Control
3.1 Digitization
3.2 Effect of Sampling
3.3 PID Control
3.4 Summary
3.5 Problems
4 Discrete Systems Analysis
4.1 Linear Difference Equations
4.2 The Discrete Transfer Function
4.2.1 The z-Transform
4.2.2 The Transfer Function
4.2.3 Block Diagrams and State-Variable Descriptions
4.2.4 Relation of Transfer Function to Pulse Response
4.2.5 External Stability
4.3 Discrete Models of Sampled-Data Systems
4.3.1 Using the z-Transform
4.3.2 *Continuous Time Delay
4.3.3 State-Space Form
4.3.4 *State-Space Models for Systems with Delay
4.3.5 *Numerical Considerations in Computing ?and ?
4.3.6 *Nonlinear Models
4.4 Signal Analysis and Dynamic Response
4.4.1 The Unit Pulse
4.4.2 The Unit Step
4.4.3 Exponential
4.4.4 General Sinusoid
4.4.5 Correspondence with Continuous Signals
4.4.6 Step Response
4.5 Frequency Response
4.5.1 *The Discrete Fourier Transform (DFT)
4.6 Properties of the z-Transform
4.6.1 Essential Properties
4.6.2 *Convergence of z-Transform
4.6.3 *Another Derivation of the Transfer Function
4.7 Summary
4.8 Problems
5 Sampled-Data Systems
5.1 Analysis of the Sample and Hold
5.2 Spectrum of a Sampled Signal
5.3 Data Extrapolation
5.4 Block-Diagram Analysis of Sampled-Data Systems
5.5 Calculating the System Output Between Samples: The Ripple
5.6 Summary
5.7 Problems
5.8 Appendix
6 Discrete Equivalents
6.l Design of Discrete Equivalents via Numerical Integration
6.2 Zero-Pole Matching Equivalents
6.3 Hold Equivalents
6.3.1 Zero-Order Hold Equivalent
6.3.2 A Non-Causal First-Order-Hold Equivalent The Triangle-Hold Equivalent
6.4 Summary
6.5 Problems
7 Design Using Transform Techniques
7.1 System Specifications
7.2 Design by Emulation
7.2.1 Discrete Equivalent Controllers
7.2.2 Evaluation of the Design
7.3 Direct Design by Root Locus in the z-Plane
7.3.1 z-Plane Specifications
7.3.2 The Discrete Root Locus
7.4 Frequency Response Methods
7.4.1 Nyquist Stability Criterion
7.4.2 Design Specifications in the Frequency Domain
7.4.3 Low Frequency Gains and Error Coefficents
7.4.4 Compensator Design
7.5 Direct Design Method of Ragazzini
7.6 Summary
7.7 Problems
8 Design Using State-Space Methods
8.1 Control Law Design
8.1.1 Pole Placement
8.1.2 Controllability
8.1.3 Pole Placement Using CACSD
8.2 Estimator Design
8.2.1 Prediction Estimators
8.2.2 Observability
8.2.3 Pole Placement Using CACSD
8.2.4 Current Estimators
8.2.5 Reduced-Order Estimators
8.3 Regulator Design: Combined Control Law and Estimator
8.3.1 The Separation Principle
8.3.2 Guidelines for Pole Placement
8.4 Introduction of the Reference Input
8.4.1 Reference Inputs for Full-State Feedback
8.4.2 Reference Inputs with Estimators: The State-Command Structure
8.4.3 Output Error Command
8.4.4 A Comparison of the Estimator Structure and Classical Methods
8.5 Integral Control and Disturbance Estimation
8.5.1 Integral Control by State Augmentation
8.5.2 Disturbance Estimation
8.6 Effect of Delays
8.6.l Sensor Delays
8.6.2 Actuator Delays
8.7 *Controllability and Observability
8.8 Summary
8.9 Problems
9 Multivariable and Optimal Control
9.1 Decoupling
9.2 Time-Varying Optimal Control
9.3 LQR Steady-State Optimal Control
9.3.1 Reciprocal Root Properties
9.3.2 Symmetric Root Locus
9.3.3 Eigenvector Decomposition
9.3.4 Cost Equivalents
9.3.5 Emulation by Equivalent Cost
9.4 Optimal Estimation
9.4.1 Least-5quares Estimation
9.4.2 The Kalman Filter
9.4.3 Steady-State Optimal Estimation
9.4.4 Noise Matrices and Discrete Equivalents
9.5 Multivariable Control Design
9.5.1 Selection of Weighting Matrices Q1 and Q2
9.5.2 Pincer Procedure
9.5.3 Paper-Machine Design Example
9.5.4 Magnetic-Tape-Drive Design Example
9.6 Summary
9.7 Problems
10 Quantization Effects
10.1 Analysis of Round-Off Error
10.2 Effects of Parameter Round-Off
10.3 Limit Cycles and Dither
10.4 Summary
10.5 Problems
11 Sample Rate Selection
11.1 The Sampling Theorem’s Limit
11.2 Time Response and Smoothness
11.3 Errors Due to Random Plant Disturbances
11.4 Sensitivity to Parameter Variations
11.5 Measurement Noise and Antialiasing Filters
11.6 Multirate Sampling
11.7 Summary
11.8 Problems
12 system Identification
13 Nonlinear Control
14 Design of a disk drive servo:A case study
Appendix A Examples
Appendix B Tables
Appendix C A few results from matrix analysis
Appendix D summary of facts from the theory of probability
Appendix E matlab functions
Appendix F Differences between matlab v5 and v4
references
index
目 录内容简介
《动态系统的数字控制》是国际上关于计算机控制的一本权威性教材。全书共分14章,内容包括概论、连续控制系统理论、采样过程和离散化、Z变换、采样数据系统、连续系统的近似离散等效、基于数学变换的经典设计方法、基于状态空间的极点配置设计方法、多变量系统的二次型最优控制、量化效应、采样周期的选择、数字控制系统的建模问题、数字控制系统的各种设计方法、变量系统的二次型最优控制、采样周期的选择、非线性控制的有关问题,以及数字控制系统的一个典型应用——磁盘驱动器的伺服控制设计等。附录中还给出了应用举例、Z变换表、矩阵变换和运算、随机过程及Matlab函数等基本材料。每章后面均有总结和习题。
《动态系统的数字控制》注重理论联系实际,书中不仅给出理论的结果,而且给出实用的算法和对一些实际问题的考虑。同时引入了MATLAB作为计算机辅助设计控制系统的软件工具,从而使所介绍的理论和方法更易于被接受和应用。本可作为控制工程及相关专业的研究生或高年级本科生的教材或参考书。
《动态系统的数字控制》注重理论联系实际,书中不仅给出理论的结果,而且给出实用的算法和对一些实际问题的考虑。同时引入了MATLAB作为计算机辅助设计控制系统的软件工具,从而使所介绍的理论和方法更易于被接受和应用。本可作为控制工程及相关专业的研究生或高年级本科生的教材或参考书。
比价列表
公众号、微信群

微信公众号

实时获取购书优惠