Chapter 1 System of Linear Equations and Elimination Method
1.1 Solving System of Linear Equations with Elimination Method
1.1.1 Linear System with Two Unknowns
1.1.2 Gauss-Jordan Elimination Method
1.2 Applications
Practice 1
Chapter 2 Matrices
2.1 Basic Concepts
2.1.1 Matrices
2.1.2 Special Matrices
2.1.3 Problems Related to Matrices
2.2 Basic Operations
2.2.1 Definitions
2.2.2 Rules of Operations
2.2.3 Applications
2.3 Matrix Inverses
2.3.1 lnvertible Matrices
2.3.2 Orthogonal Matrices
2.4 Blocks and Sub-matrices
2.4.1 Block Operations
2.4.2 Column Blocks
2.4.3 Sub-matrices
2.5 Elementary Operations and Elementary Matrices
2.5.1 Definitions and Properties
2.5.2 Equivalent Normal Form for Matrices
2.5.3 Invertible Matrices Revisit
2.5.4 Unique solution for n x n linear systems
2.6 Applications(Input - output Analysis)
Practice 2
Chapter 3 Determinants
3.1 Definitions and Properties of Determinants
3.1.1 Definitions
3.1.2 Propertie
3.2 Evaluation of Determinants
3.3 Applications
3.3.1 Adjugate Matrices and Inverse Formula
3.3.2 Cramers Rule
3.3.3 Summary
Practice 3
Chapter 4 Rank of a Matrix and Solutions for Linear Systems
4.1 Rank of a Matrix
4.1.1 Concepts
4.1.2 Computations
4.2 Solutions of Linear Systems
4.2.1 Homogeneous Systems
4.2.2 Non-homogeneous Systems
Practice 4
Chapter 5 Vector Spaces
5.1 Concepts
5.2 Linear Dependence and Linear Independence
5.2.1 Concepts
5.2.2 Properties
5.2.3 Rank of a Set of Vectors
5.2.4 Row and Column Ranks of a Matrix
5.3 Bases and Dimensions of Vector Spaces
5.3.1 Bases and Dimensions
5.3.2 Revisit Solutions for Linear Systems
5.4 Inner Products
5.4.1 Review
5.4.2 Inner Products and Orthogonal Matrices
5.4.3 Four Basic Subspaces
Practice 5
Chapter 6 Eigenvalues
6.1 Eigenvalues and Eigenvectors
6.2 Diagonalizations
6.2.1 Similar Matrices and Diagonal Forms
6.2.2 Applications
6.3 Real Symmetric Matrices and Quadratic Forms
6.3..1 Canonical Forms for Real Symmetric Matrices
6.3.2 Quadratic Forms
6.3.3 Quadratic Expressions and Their Canonical Forms
6.4 Positive Definite Matrices and Classification of Quadratic Forms
6.4.1 Positive Definite Matrices
6.4.2 Optimization
6.4.3 Generalized Eigenvalue Problems
Practice 6
Chapter 7 Linear Transformations
7.1 Basic Concepts of Linear Transformations
7.1.1 Linear Transformations
7.1.2 Range and Kernel for a Linear Transformation
7.2 Linear Transformations and Matrices
7.2.1 Coordinate Vectors
7.2.2 The Matrix Representations for Linear Transformations
7.2.3 Engenvalues and Eigenvectors of a Linear Transformation
Practice 7
References