畅销套装-写给孩子的趣味科普经典:数学+几何+天文+物理+力学(一次性告诉你如何帮助孩子爱上学习)

《写给孩子的趣味代数学》
Chapter 1 第五种数学运算———乘方 / 001
1.1 乘方:第五种数学运算 / 003
1.2 庞大的天文数字 / 004
1.3 空气的质量 / 006
1.4 常温下的燃烧 / 007
1.5 意想不到的天气变化 / 008
1.6 很难打开的密码锁 / 009
1.7 骑车人的烦恼 / 010
1.8 用2累乘的惊人结果 / 011
1.9 计数触发器 / 014
1.10 数不清的象棋棋局 / 017
1.11 隐藏在自动弈棋机中的秘密 / 019
1.12 三个2 / 022
1.13 三个3 / 023
1.14 三个4 / 024
1.15 相同的三个数 / 024
1.16 四个1 / 026
1.17 四个2 / 026
Chapter 2 代数的语言 / 029
2.1 透过碑文看刁藩都的生平 / 031
2.2 负重的马和骡子 / 032
2.3 四兄弟各有多少钱 / 033
2.4 两只鸟 / 034
2.5 散步的问题 / 035
2.6 割草人 / 036
2.7 牧场上的问题 / 040
2.8 牛顿关于牛的母题 / 042
2.9 表针的对调问题 / 045
2.10 表针的重合位置 / 048
2.11 猜数游戏 / 049
2.12 “荒唐”的数学题 / 053
2.13 比我们想得更周密的方程 / 054
2.14 棘手的方程 / 055
2.15 理发师的代数题 / 058
2.16 步行者与电车 / 059
2.17 漂流的木筏 / 061
2.18 两罐咖啡的质量 / 062
2.19 晚会上的跳舞人 / 063
2.20 海上的侦察船 / 064
2.21 自行车比赛 / 066
2.22 在摩托车赛场上 / 067
2.23 汽车的平均速度 / 069
Chapter 3 算术的帮手 / 071
3.1 简便的速乘法 / 073
3.2 独特的数字1,5,6 / 076
3.3 数字25和76 / 077
3.4 神奇的无限长“数” / 078
3.5 一个关于补差的古老题目 / 082
3.6 能被11整除的数 / 083
3.7 违规汽车的车牌号 / 086
3.8 能被19整除的数 / 087
3.9 苏菲·热门的问题 /089
3.10 合数的个数 / 090
3.11 素数 / 092
3.12 的素数 / 093
3.13 代数并不总能让问题更简单 / 093
Chapter 4 刁藩都方程 / 095
4.1 怎样付清毛衣钱 / 097
4.2 恢复账本 / 101
4.3 巧买邮票 / 103
4.4 西瓜、苹果和李子 / 105
4.5 出生在哪一天 / 106
4.6 三姐妹卖母鸡 / 110
4.7 巧推未知数 / 112
4.8 矩形的边长 / 114
4.9 有意思的两位数 / 115
4.10 勾股定理 / 117
4.11 伟大的费马猜想 / 121
Chapter 5 第六种数学运算 / 125
5.1 乘方的逆运算 / 127
5.2 哪个数字更大 / 128
5.3 你能看出答案吗 / 130
5.4 数学领域里的滑稽剧 / 131
Chapter 6 二次方程 / 135
6.1 参加会议的人数问题 / 137
6.2 蜂群中有多少只蜜蜂 / 138
6.3 顽皮的猴子 / 139
6.4 会预言的方程 / 140
6.5 欧拉的问题 / 141
6.6 广场上的扬声器 / 144
6.7 《口算》中的“难题” / 145
6.8 有意思的数列 / 147
Chapter 7 值和小值的问题 / 149
7.1 火车头的距离 / 151
7.2 在哪里设立小站 / 153
7.3 公路的路线设定 / 156
7.4 乘积 / 158
7.5 总和小 / 162
7.6 方木梁的体积问题 / 162
7.7 正方形的有趣性质 / 163
7.8 扇形的风筝 / 164
7.9 修建新屋 / 165
7.10 建筑工地的面积 / 167
7.11 槽的截面问题 / 168
7.12 大容量的漏斗 / 171
7.13 硬币的亮度 / 173
Chapter 8 级 数 / 177
8.1 古老的级数问题 / 179
8.2 方格纸的妙用 / 180
8.3 园丁的问题 / 182
8.4 养鸡 / 183
8.5 挖沟所用的时间 / 184
8.6 卖苹果 / 185
8.7 买马还是买钉子 / 186
8.8 战士的抚恤金问题 / 188
Chapter 9 第七种数学运算 / 189
9.1 第七种运算———求对数/191
9.2 对数的“敌人” / 192
9.3 “进化”中的对数表 / 194
9.4 对数中的“巨人” / 195
9.5 速算专家的秘密 / 196
9.6 公牛所需的热量 / 199
9.7 音乐中的数学知识 / 200
9.8 恒星、噪声、对数 / 202
9.9 灯泡中的对数 / 204
9.10 富兰克林的遗嘱 / 206
9.11 存款的利息问题 / 209
9.12 神奇的数“ e” / 210
9.13 滑稽的对数 / 212
9.14 用三个2表示出任意数 / 213
《写给孩子的趣味几何学》
Chapter 1 树林中的几何学 / 001
1 利用阴影测量物体的高度 / 003
2 两个简单的方法 / 007
3 儒勒·凡尔纳的巧妙测高法 / 008
4 侦察兵的测高法 / 010
5 笔记本测高法 / 012
6 无须靠近大树的测高方法 / 013
7 林业人员使用的测高仪 / 014
8 利用镜子测量高度 / 017
9 两棵松树 / 018
10 树干形状 / 019
11 公式 / 020
12 如何测量未被砍倒的树木的体积和质量 / 022
13 树叶中的几何学 / 024
14 六条腿的 “小” 力士 / 026
Chapter 2 河畔几何学 / 029
1 四种测河流宽度的方法 / 031
2 利用帽檐测距离 / 035
3 小岛的长度 / 037
4 我们和对岸的人相隔多远 / 038
5 简易的测远仪 / 040
6 河流巨大的能量 / 043
7 测量河流流动速度 / 044
8 河水流量的计算方法 / 046
9 水中的涡轮 / 049
10 油膜的厚度 / 050
11 水上的圆圈 / 051
12 船头形成的波峰 / 053
13 炮弹的飞行速度 / 055
14 诗歌中测水深 / 057
15 水中可以看到多少星星 / 058
16 两点间近的桥 / 059
17 两点间距离短的两座桥 / 061
Chapter 3 旷野中的几何学 / 063
1 看月亮的视角 / 065
2 记住 “57” / 066
3 和月亮一样 “大” 的盘子 / 067
4 和月亮一样 “大” 的硬币 / 068
5 虚假照片的小把戏 / 068
6 可移动式测角仪 / 072
7 雅科夫的测角方法 / 074
8 钉耙测角方法 / 075
9 炮兵使用的测角仪 / 076
10 看不清的横纹图 / 078
11 你能看清的远距离 / 079
12 天空中 “忽大忽小” 的月亮 / 081
13 月球影子的长度 / 084
14 云彩离我们有多远 / 085
15 根据照片测塔高 / 088
16 自测题 / 090
Chapter 4 路途中的几何学 / 091
1 步测的方法 / 093
2 神奇的目测 / 094
3 铁路的坡度 / 097
4 碎石堆的体积 / 099
5 “骄傲的土丘” 的高度 / 100
6 转弯 / 102
7 铁路的弯道半径怎么计算 / 103
8 大洋的底是凹还是凸 / 105
9 “水山” / 106
Chapter 5 不用公式和函数的旅行三角学 / 109
1 三角形的正弦值怎么求 / 111
2 简单的平方根算法 / 115
3 由正弦值计算角度 / 116
4 用正弦求太阳的高度 / 117
5 小岛离你有多远 / 118
6 湖面有多宽 / 119
7 已知三角形边长如何算角度 / 121
8 赤手空拳算角度 / 123
Chapter 6 天与地在何处相接 / 125
1 地球怎么看起来凹下去了 / 127
2 消失不见的轮船 / 129
3 地平线到底有多远 / 130
4 果戈理不切实际的塔 / 133
5 普希金骄傲的山丘 / 134
6 铁轨交会在一起了 / 134
7 海岸边的灯塔 / 135
8 距离多远能看到闪电 / 136
9 海中消失的帆船 / 137
10 月球上也有地平线 / 138
11 从环形山里看世界 / 138
12 木星上 “地平线” 的距离 / 139
13 自测题 / 139
Chapter 7 鲁滨孙的几何学 / 141
1 星星 “告诉” 你所在的位置 / 143
2 我们现在在哪里 / 145
3 荒岛上的天文观测 / 147
Chapter 8 黑暗中的几何学 / 149
1 黑暗的船舱 / 151
2 木桶的容积 / 152
3 制作木条尺子 / 152
4 尺子上的刻度怎么弄 / 154
5 少年的算法正确吗 / 155
6 黑屋子里的奇遇 / 159
7 蒙上眼睛你还能走直线吗 / 160
8 天然的尺子———我们的双手 / 168
9 少年测量方法中的直角 / 170
Chapter 9 圆的今昔 / 171
1 古人的几何学 / 173
2 π的精确度 / 173
3 丢弃的田地 / 175
4 用针测 π值 / 176
5 圆周展开的误差 / 178
6 方和圆之间的转化 / 179
7 解决方圆问题的三角板 / 182
8 头比脚走得多一些 / 183
9 捆在赤道上的冷钢丝 / 184
10 硬币自转了几圈 / 184
11 女孩走的是直线吗 / 186
12 飞机的飞行轨迹是什么样的 / 189
13 传动皮带有多长 / 192
14 乌鸦真的 “聪明” 吗 / 194
Chapter 10 无须测算的几何学 / 197
1 不用圆规也能作出垂线 / 199
2 不规则薄铁片的重心 / 200
3 拿破仑感兴趣的题目 / 201
4 自制简单的三分角器 / 202
5 钟表三分角器 / 203
6 等分圆周的方法 / 204
7 打台球的技巧 / 205
8 台球可以做题 / 207
9 一笔画问题 / 211
10 一次能走过七座桥吗 / 214
11 几何学的 “大话” / 214
12 如何知道这是正方形 / 215
13 谁是下棋的赢家 / 216
Chapter 11 几何学中的大与小 / 217
1 27 × 1018个什么东西能够放进1立方厘米里面 / 219
2 怎样压缩气体 / 220
3 神奇的织女 / 222
4 哪个的容量更大呢 / 224
5 巨大的香烟 / 225
6 鸵鸟蛋的体积有多大 / 225
7 隆鸟蛋可以让多少人吃饱 / 226
8 鸟蛋大小竟然相差700倍 / 226
9 不打破蛋壳可以称出蛋壳的质量吗 / 227
10 硬币的大小 / 227
11 一层多楼高的硬币 / 228
12 不要被图片所蒙骗 / 229
13 你是标准的体重吗 / 231
14 “大人” 和 “小人” / 231
15 《格列佛游记》 中的几何学 / 232
16 为什么尘埃和云可以浮在空中呢 / 234
Chapter 12 几何经济学 / 237
1 托尔斯泰的题目: 帕霍姆的买地法 / 239
2 怎样使四边形面积 / 242
3 为什么正方形的面积 / 243
4 还有面积更大的形状吗 / 244
5 谁的面积 / 245
6 难拔的钉子 / 247
7 体积是什么形状 / 248
8 两数之和不变的乘数的积 / 248
9 面积的三角形是什么 / 249
10 重的方木梁怎么锯 / 250
11 三角形中的矩形 / 251
12 怎么做出的盒子 / 253
13 圆锥体中的圆柱体 / 254
14 拼接长木板的技巧 / 256
15 哪条路线短 / 258
《写给孩子的趣味天文学》
Chapter 1 地球的形状和运动 / 001
1.1 奇妙的短航线 / 003
1.2 是经度长, 还是纬度长 / 010
1.3 阿蒙森飞向哪个方向 / 011
1.4 五种不同的计时法 / 012
1.5 白昼时长 / 016
1.6 诡异的影子 / 019
1.7 哪列火车更重 / 021
1.8 能辨别方向的怀表 / 023
1.9 奇妙的白夜与黑昼 / 026
1.10 光明与黑暗的交替 / 027
1.11 北极太阳之谜 / 029
1.12 四季始于哪天 / 029
1.13 有关地球公转的三个假设 / 031
1.14 地球公转的轨道形状 / 036
1.15 地球在中午还是黄昏离太阳更近 / 043
1.16 把地球公转半径增加1 米的假设 / 044
1.17 从不同角度看运动 / 046
1.18 非地球时间 / 049
1.19 年月日的交替从何时开始 / 051
1.20 2月有几个星期五 / 053
Chapter 2 月球及其运动 / 055
2.1 如何区分新月和残月 / 057
2.2 被画错的月亮 / 058
2.3 行星双生儿 / 060
2.4 为什么太阳不能把月球吸引到自己身边 / 063
2.5 看看月亮的脸 / 064
2.6 传说中的星球 / 068
2.7 为什么大气不能在月球存留 / 069
2.8 月球的大小 / 072
2.9 奇妙的月球风景 / 074
2.10 月球上的奇异天空 / 080
2.11 研究日、 月食的意义 / 086
2.12 什么是沙罗周期 / 092
2.13 同时出现在地平线上的太阳和月亮 / 094
2.14 有关日食和月食的问题 / 095
2.15 月球上的天气是什么样的 / 098
Chapter 3 行星 / 101
3.1 在白昼看行星 / 103
3.2 古老的行星符号 / 104
3.3 无法画出的太阳系 / 107
3.4 为什么水星上没有大气 / 110
3.5 金星相位的发现 / 111
3.6 火星大冲时间的计算 / 113
3.7 不谈火星 / 115
3.8 解密木星 / 115
3.9 土星上的光环真的消失了吗 / 118
3.10 字谜中的天文发现 / 119
3.11 小行星的出现 / 121
3.12 离地球近的小行星 / 123
3.13 木星的伴星——— “特洛伊英雄” / 124
3.14 太阳系上的各行星 / 124
Chapter 4 恒星 / 131
4.1 谁创造了璀璨的恒星 / 133
4.2 星星真会眨眼睛吗 / 135
4.3 白天是否能看见恒星 / 137
4.4 什么是星等 / 139
4.5 恒星代数学 / 140
4.6 用望远镜观测恒星 / 144
4.7 计算太阳和月亮的星等 / 146
4.8 比一比恒星和太阳的真实亮度 / 148
4.9 宇宙间亮的星 / 150
4.10 地球天空和其他天空各大行星的星等 / 151
4.11 观测恒星时的困境 / 153
4.12 怎样测量恒星的直径 / 156
4.13 宇宙中巨大的恒星 / 158
4.14 不可思议的计算结果 / 160
4.15 宇宙中重的物质 / 161
4.16 为什么这些星叫作 “恒” 星 / 166
4.17 恒星有互撞的可能吗 / 169
4.18 恒星距离的尺度 / 170
4.19 离太阳近的恒星 / 173
4.20 放不下的模型 / 175
Chapter 5 万有引力 / 179
5.1 垂直上射的炮弹 / 181
5.2 高空中的重量变化 / 184
5.3 用圆规求行星轨道 / 187
5.4 行星坠落到太阳上 / 192
5.5 天堂的铁砧 / 195
5.6 太阳系的边界位置 / 196
5.7 纠正凡尔纳小说中的错误 / 197
5.8 如何称量地球的质量 / 197
5.9 构成地球核心的是什么 / 200
5.10 太阳和月球的质量 / 201
5.11 行星和恒星的质量与密度 / 204
5.12 月球上和行星上的重力变化 / 205
5.13 想不到的天体表面重力 / 207
5.14 轮船的轻重 / 208
5.15 月球和太阳引起的潮汐 / 210
5.16 月球与气候 / 213
《写给孩子的趣味物理学》
Chapter 1 速度和运动
1.1 我们能跑多快
1.2 我们追得上时间吗
1.3 “眨眼之间”我们可以做什么
1.4 时间放大镜
1.5 什么时候我们绕太阳运行得更快——白天还是夜间
1.6 车轮转动之谜
1.7 车轮哪部分移动得慢
1.8 这不是玩笑话
1.9 帆船从何处驶来
Chapter 2 重力、重量、杠杆和压力
2.1 请站起来
2.2 你真的熟悉走与跑吗
2.3 应该怎样安全跳下行驶着的车
2.4 徒手抓子弹
2.5 水果炮弹
2.6 跳来跳去的体重值
2.7 物体在哪儿更重些
2.8 物体落下时的重量
2.9 《从地球到月球》
2.10 儒勒·凡尔纳笔下的月球旅行
2.11 在不准确的天平上进行准确的称重
2.12 我们的实际力量
2.13 为什么针能轻易刺进别的物体
2.14 为什么睡在柔软的床上觉得舒服
Chapter 3 介质的阻力
3.1 空气的阻力有多大
3.2 远程射击的起源
3.3 风筝为什么能飞上天
3.4 活的滑翔机
3.5 植物的滑翔
3.6 运动员延迟跳伞
3.7 飞旋镖
Chapter 4 不知疲倦的“永动机”
4.1 怎样区分熟鸡蛋和生鸡蛋
4.2 无处不在的“开心转盘”
4.3 墨水旋涡与大气旋流
4.4 欺骗植物
4.5 完美的“永动机”
4.6 耍脾气的“永动机”
4.7 神奇的蓄能器
4.8 “永动机”的意外收获
4.9 还有两种“永动机”
4.10 彼得大帝与他热爱的“永动机”
....
Chapter 1 第五种数学运算———乘方 / 001
1.1 乘方:第五种数学运算 / 003
1.2 庞大的天文数字 / 004
1.3 空气的质量 / 006
1.4 常温下的燃烧 / 007
1.5 意想不到的天气变化 / 008
1.6 很难打开的密码锁 / 009
1.7 骑车人的烦恼 / 010
1.8 用2累乘的惊人结果 / 011
1.9 计数触发器 / 014
1.10 数不清的象棋棋局 / 017
1.11 隐藏在自动弈棋机中的秘密 / 019
1.12 三个2 / 022
1.13 三个3 / 023
1.14 三个4 / 024
1.15 相同的三个数 / 024
1.16 四个1 / 026
1.17 四个2 / 026
Chapter 2 代数的语言 / 029
2.1 透过碑文看刁藩都的生平 / 031
2.2 负重的马和骡子 / 032
2.3 四兄弟各有多少钱 / 033
2.4 两只鸟 / 034
2.5 散步的问题 / 035
2.6 割草人 / 036
2.7 牧场上的问题 / 040
2.8 牛顿关于牛的母题 / 042
2.9 表针的对调问题 / 045
2.10 表针的重合位置 / 048
2.11 猜数游戏 / 049
2.12 “荒唐”的数学题 / 053
2.13 比我们想得更周密的方程 / 054
2.14 棘手的方程 / 055
2.15 理发师的代数题 / 058
2.16 步行者与电车 / 059
2.17 漂流的木筏 / 061
2.18 两罐咖啡的质量 / 062
2.19 晚会上的跳舞人 / 063
2.20 海上的侦察船 / 064
2.21 自行车比赛 / 066
2.22 在摩托车赛场上 / 067
2.23 汽车的平均速度 / 069
Chapter 3 算术的帮手 / 071
3.1 简便的速乘法 / 073
3.2 独特的数字1,5,6 / 076
3.3 数字25和76 / 077
3.4 神奇的无限长“数” / 078
3.5 一个关于补差的古老题目 / 082
3.6 能被11整除的数 / 083
3.7 违规汽车的车牌号 / 086
3.8 能被19整除的数 / 087
3.9 苏菲·热门的问题 /089
3.10 合数的个数 / 090
3.11 素数 / 092
3.12 的素数 / 093
3.13 代数并不总能让问题更简单 / 093
Chapter 4 刁藩都方程 / 095
4.1 怎样付清毛衣钱 / 097
4.2 恢复账本 / 101
4.3 巧买邮票 / 103
4.4 西瓜、苹果和李子 / 105
4.5 出生在哪一天 / 106
4.6 三姐妹卖母鸡 / 110
4.7 巧推未知数 / 112
4.8 矩形的边长 / 114
4.9 有意思的两位数 / 115
4.10 勾股定理 / 117
4.11 伟大的费马猜想 / 121
Chapter 5 第六种数学运算 / 125
5.1 乘方的逆运算 / 127
5.2 哪个数字更大 / 128
5.3 你能看出答案吗 / 130
5.4 数学领域里的滑稽剧 / 131
Chapter 6 二次方程 / 135
6.1 参加会议的人数问题 / 137
6.2 蜂群中有多少只蜜蜂 / 138
6.3 顽皮的猴子 / 139
6.4 会预言的方程 / 140
6.5 欧拉的问题 / 141
6.6 广场上的扬声器 / 144
6.7 《口算》中的“难题” / 145
6.8 有意思的数列 / 147
Chapter 7 值和小值的问题 / 149
7.1 火车头的距离 / 151
7.2 在哪里设立小站 / 153
7.3 公路的路线设定 / 156
7.4 乘积 / 158
7.5 总和小 / 162
7.6 方木梁的体积问题 / 162
7.7 正方形的有趣性质 / 163
7.8 扇形的风筝 / 164
7.9 修建新屋 / 165
7.10 建筑工地的面积 / 167
7.11 槽的截面问题 / 168
7.12 大容量的漏斗 / 171
7.13 硬币的亮度 / 173
Chapter 8 级 数 / 177
8.1 古老的级数问题 / 179
8.2 方格纸的妙用 / 180
8.3 园丁的问题 / 182
8.4 养鸡 / 183
8.5 挖沟所用的时间 / 184
8.6 卖苹果 / 185
8.7 买马还是买钉子 / 186
8.8 战士的抚恤金问题 / 188
Chapter 9 第七种数学运算 / 189
9.1 第七种运算———求对数/191
9.2 对数的“敌人” / 192
9.3 “进化”中的对数表 / 194
9.4 对数中的“巨人” / 195
9.5 速算专家的秘密 / 196
9.6 公牛所需的热量 / 199
9.7 音乐中的数学知识 / 200
9.8 恒星、噪声、对数 / 202
9.9 灯泡中的对数 / 204
9.10 富兰克林的遗嘱 / 206
9.11 存款的利息问题 / 209
9.12 神奇的数“ e” / 210
9.13 滑稽的对数 / 212
9.14 用三个2表示出任意数 / 213
《写给孩子的趣味几何学》
Chapter 1 树林中的几何学 / 001
1 利用阴影测量物体的高度 / 003
2 两个简单的方法 / 007
3 儒勒·凡尔纳的巧妙测高法 / 008
4 侦察兵的测高法 / 010
5 笔记本测高法 / 012
6 无须靠近大树的测高方法 / 013
7 林业人员使用的测高仪 / 014
8 利用镜子测量高度 / 017
9 两棵松树 / 018
10 树干形状 / 019
11 公式 / 020
12 如何测量未被砍倒的树木的体积和质量 / 022
13 树叶中的几何学 / 024
14 六条腿的 “小” 力士 / 026
Chapter 2 河畔几何学 / 029
1 四种测河流宽度的方法 / 031
2 利用帽檐测距离 / 035
3 小岛的长度 / 037
4 我们和对岸的人相隔多远 / 038
5 简易的测远仪 / 040
6 河流巨大的能量 / 043
7 测量河流流动速度 / 044
8 河水流量的计算方法 / 046
9 水中的涡轮 / 049
10 油膜的厚度 / 050
11 水上的圆圈 / 051
12 船头形成的波峰 / 053
13 炮弹的飞行速度 / 055
14 诗歌中测水深 / 057
15 水中可以看到多少星星 / 058
16 两点间近的桥 / 059
17 两点间距离短的两座桥 / 061
Chapter 3 旷野中的几何学 / 063
1 看月亮的视角 / 065
2 记住 “57” / 066
3 和月亮一样 “大” 的盘子 / 067
4 和月亮一样 “大” 的硬币 / 068
5 虚假照片的小把戏 / 068
6 可移动式测角仪 / 072
7 雅科夫的测角方法 / 074
8 钉耙测角方法 / 075
9 炮兵使用的测角仪 / 076
10 看不清的横纹图 / 078
11 你能看清的远距离 / 079
12 天空中 “忽大忽小” 的月亮 / 081
13 月球影子的长度 / 084
14 云彩离我们有多远 / 085
15 根据照片测塔高 / 088
16 自测题 / 090
Chapter 4 路途中的几何学 / 091
1 步测的方法 / 093
2 神奇的目测 / 094
3 铁路的坡度 / 097
4 碎石堆的体积 / 099
5 “骄傲的土丘” 的高度 / 100
6 转弯 / 102
7 铁路的弯道半径怎么计算 / 103
8 大洋的底是凹还是凸 / 105
9 “水山” / 106
Chapter 5 不用公式和函数的旅行三角学 / 109
1 三角形的正弦值怎么求 / 111
2 简单的平方根算法 / 115
3 由正弦值计算角度 / 116
4 用正弦求太阳的高度 / 117
5 小岛离你有多远 / 118
6 湖面有多宽 / 119
7 已知三角形边长如何算角度 / 121
8 赤手空拳算角度 / 123
Chapter 6 天与地在何处相接 / 125
1 地球怎么看起来凹下去了 / 127
2 消失不见的轮船 / 129
3 地平线到底有多远 / 130
4 果戈理不切实际的塔 / 133
5 普希金骄傲的山丘 / 134
6 铁轨交会在一起了 / 134
7 海岸边的灯塔 / 135
8 距离多远能看到闪电 / 136
9 海中消失的帆船 / 137
10 月球上也有地平线 / 138
11 从环形山里看世界 / 138
12 木星上 “地平线” 的距离 / 139
13 自测题 / 139
Chapter 7 鲁滨孙的几何学 / 141
1 星星 “告诉” 你所在的位置 / 143
2 我们现在在哪里 / 145
3 荒岛上的天文观测 / 147
Chapter 8 黑暗中的几何学 / 149
1 黑暗的船舱 / 151
2 木桶的容积 / 152
3 制作木条尺子 / 152
4 尺子上的刻度怎么弄 / 154
5 少年的算法正确吗 / 155
6 黑屋子里的奇遇 / 159
7 蒙上眼睛你还能走直线吗 / 160
8 天然的尺子———我们的双手 / 168
9 少年测量方法中的直角 / 170
Chapter 9 圆的今昔 / 171
1 古人的几何学 / 173
2 π的精确度 / 173
3 丢弃的田地 / 175
4 用针测 π值 / 176
5 圆周展开的误差 / 178
6 方和圆之间的转化 / 179
7 解决方圆问题的三角板 / 182
8 头比脚走得多一些 / 183
9 捆在赤道上的冷钢丝 / 184
10 硬币自转了几圈 / 184
11 女孩走的是直线吗 / 186
12 飞机的飞行轨迹是什么样的 / 189
13 传动皮带有多长 / 192
14 乌鸦真的 “聪明” 吗 / 194
Chapter 10 无须测算的几何学 / 197
1 不用圆规也能作出垂线 / 199
2 不规则薄铁片的重心 / 200
3 拿破仑感兴趣的题目 / 201
4 自制简单的三分角器 / 202
5 钟表三分角器 / 203
6 等分圆周的方法 / 204
7 打台球的技巧 / 205
8 台球可以做题 / 207
9 一笔画问题 / 211
10 一次能走过七座桥吗 / 214
11 几何学的 “大话” / 214
12 如何知道这是正方形 / 215
13 谁是下棋的赢家 / 216
Chapter 11 几何学中的大与小 / 217
1 27 × 1018个什么东西能够放进1立方厘米里面 / 219
2 怎样压缩气体 / 220
3 神奇的织女 / 222
4 哪个的容量更大呢 / 224
5 巨大的香烟 / 225
6 鸵鸟蛋的体积有多大 / 225
7 隆鸟蛋可以让多少人吃饱 / 226
8 鸟蛋大小竟然相差700倍 / 226
9 不打破蛋壳可以称出蛋壳的质量吗 / 227
10 硬币的大小 / 227
11 一层多楼高的硬币 / 228
12 不要被图片所蒙骗 / 229
13 你是标准的体重吗 / 231
14 “大人” 和 “小人” / 231
15 《格列佛游记》 中的几何学 / 232
16 为什么尘埃和云可以浮在空中呢 / 234
Chapter 12 几何经济学 / 237
1 托尔斯泰的题目: 帕霍姆的买地法 / 239
2 怎样使四边形面积 / 242
3 为什么正方形的面积 / 243
4 还有面积更大的形状吗 / 244
5 谁的面积 / 245
6 难拔的钉子 / 247
7 体积是什么形状 / 248
8 两数之和不变的乘数的积 / 248
9 面积的三角形是什么 / 249
10 重的方木梁怎么锯 / 250
11 三角形中的矩形 / 251
12 怎么做出的盒子 / 253
13 圆锥体中的圆柱体 / 254
14 拼接长木板的技巧 / 256
15 哪条路线短 / 258
《写给孩子的趣味天文学》
Chapter 1 地球的形状和运动 / 001
1.1 奇妙的短航线 / 003
1.2 是经度长, 还是纬度长 / 010
1.3 阿蒙森飞向哪个方向 / 011
1.4 五种不同的计时法 / 012
1.5 白昼时长 / 016
1.6 诡异的影子 / 019
1.7 哪列火车更重 / 021
1.8 能辨别方向的怀表 / 023
1.9 奇妙的白夜与黑昼 / 026
1.10 光明与黑暗的交替 / 027
1.11 北极太阳之谜 / 029
1.12 四季始于哪天 / 029
1.13 有关地球公转的三个假设 / 031
1.14 地球公转的轨道形状 / 036
1.15 地球在中午还是黄昏离太阳更近 / 043
1.16 把地球公转半径增加1 米的假设 / 044
1.17 从不同角度看运动 / 046
1.18 非地球时间 / 049
1.19 年月日的交替从何时开始 / 051
1.20 2月有几个星期五 / 053
Chapter 2 月球及其运动 / 055
2.1 如何区分新月和残月 / 057
2.2 被画错的月亮 / 058
2.3 行星双生儿 / 060
2.4 为什么太阳不能把月球吸引到自己身边 / 063
2.5 看看月亮的脸 / 064
2.6 传说中的星球 / 068
2.7 为什么大气不能在月球存留 / 069
2.8 月球的大小 / 072
2.9 奇妙的月球风景 / 074
2.10 月球上的奇异天空 / 080
2.11 研究日、 月食的意义 / 086
2.12 什么是沙罗周期 / 092
2.13 同时出现在地平线上的太阳和月亮 / 094
2.14 有关日食和月食的问题 / 095
2.15 月球上的天气是什么样的 / 098
Chapter 3 行星 / 101
3.1 在白昼看行星 / 103
3.2 古老的行星符号 / 104
3.3 无法画出的太阳系 / 107
3.4 为什么水星上没有大气 / 110
3.5 金星相位的发现 / 111
3.6 火星大冲时间的计算 / 113
3.7 不谈火星 / 115
3.8 解密木星 / 115
3.9 土星上的光环真的消失了吗 / 118
3.10 字谜中的天文发现 / 119
3.11 小行星的出现 / 121
3.12 离地球近的小行星 / 123
3.13 木星的伴星——— “特洛伊英雄” / 124
3.14 太阳系上的各行星 / 124
Chapter 4 恒星 / 131
4.1 谁创造了璀璨的恒星 / 133
4.2 星星真会眨眼睛吗 / 135
4.3 白天是否能看见恒星 / 137
4.4 什么是星等 / 139
4.5 恒星代数学 / 140
4.6 用望远镜观测恒星 / 144
4.7 计算太阳和月亮的星等 / 146
4.8 比一比恒星和太阳的真实亮度 / 148
4.9 宇宙间亮的星 / 150
4.10 地球天空和其他天空各大行星的星等 / 151
4.11 观测恒星时的困境 / 153
4.12 怎样测量恒星的直径 / 156
4.13 宇宙中巨大的恒星 / 158
4.14 不可思议的计算结果 / 160
4.15 宇宙中重的物质 / 161
4.16 为什么这些星叫作 “恒” 星 / 166
4.17 恒星有互撞的可能吗 / 169
4.18 恒星距离的尺度 / 170
4.19 离太阳近的恒星 / 173
4.20 放不下的模型 / 175
Chapter 5 万有引力 / 179
5.1 垂直上射的炮弹 / 181
5.2 高空中的重量变化 / 184
5.3 用圆规求行星轨道 / 187
5.4 行星坠落到太阳上 / 192
5.5 天堂的铁砧 / 195
5.6 太阳系的边界位置 / 196
5.7 纠正凡尔纳小说中的错误 / 197
5.8 如何称量地球的质量 / 197
5.9 构成地球核心的是什么 / 200
5.10 太阳和月球的质量 / 201
5.11 行星和恒星的质量与密度 / 204
5.12 月球上和行星上的重力变化 / 205
5.13 想不到的天体表面重力 / 207
5.14 轮船的轻重 / 208
5.15 月球和太阳引起的潮汐 / 210
5.16 月球与气候 / 213
《写给孩子的趣味物理学》
Chapter 1 速度和运动
1.1 我们能跑多快
1.2 我们追得上时间吗
1.3 “眨眼之间”我们可以做什么
1.4 时间放大镜
1.5 什么时候我们绕太阳运行得更快——白天还是夜间
1.6 车轮转动之谜
1.7 车轮哪部分移动得慢
1.8 这不是玩笑话
1.9 帆船从何处驶来
Chapter 2 重力、重量、杠杆和压力
2.1 请站起来
2.2 你真的熟悉走与跑吗
2.3 应该怎样安全跳下行驶着的车
2.4 徒手抓子弹
2.5 水果炮弹
2.6 跳来跳去的体重值
2.7 物体在哪儿更重些
2.8 物体落下时的重量
2.9 《从地球到月球》
2.10 儒勒·凡尔纳笔下的月球旅行
2.11 在不准确的天平上进行准确的称重
2.12 我们的实际力量
2.13 为什么针能轻易刺进别的物体
2.14 为什么睡在柔软的床上觉得舒服
Chapter 3 介质的阻力
3.1 空气的阻力有多大
3.2 远程射击的起源
3.3 风筝为什么能飞上天
3.4 活的滑翔机
3.5 植物的滑翔
3.6 运动员延迟跳伞
3.7 飞旋镖
Chapter 4 不知疲倦的“永动机”
4.1 怎样区分熟鸡蛋和生鸡蛋
4.2 无处不在的“开心转盘”
4.3 墨水旋涡与大气旋流
4.4 欺骗植物
4.5 完美的“永动机”
4.6 耍脾气的“永动机”
4.7 神奇的蓄能器
4.8 “永动机”的意外收获
4.9 还有两种“永动机”
4.10 彼得大帝与他热爱的“永动机”
....
雅科夫·伊西达洛维奇·别莱利曼(1882—1942) 出生于俄国格罗德省别洛斯托克市,是享誉世界的科普作家、趣味科学的奠基人。17岁时,他开始在报刊上发表作品。1909年大学毕业以后,他开始全力从事科普写作和教育工作。别莱利曼一生共创作了105部作品,其中大部分是趣味科学读物,并且很多作品被翻译成数十种语言,对青少年的科学学习产生了深远影响,对世界科普事业的发展做出了卓越贡献。
《写给孩子的趣味代数学》
本书作者别莱利曼把代数紧紧贴近生活, 书中既有文学作品中摘录出来的数学题, 也有音乐、美术中的数学知识, 更有生活中人们会遇到的买卖等问题,内容新颖别致, 过程耐人寻味, 结果出人意料。在启发读者的阅读兴趣, 指导读者学习代数学知识的同时, 帮助读者解决生活中的实际问题。总之,这是一本能够让读者受益无穷的趣味科普读物!
《写给孩子的趣味几何学》
本书作者别莱利曼将几何学问题从校园搬到户外, 天马行空地做几何学问题,以通俗易懂、妙趣横生的语言对几何学的知识点进行了有趣而全面的讲解,并运用各种奇思妙想,向读者提出各种各样的几何学问题, 内容新颖别致, 过程耐人寻味, 结果出人意料。在启发读者的阅读兴趣, 指导读者学习几何知识的同时, 帮助读者解决生活中的实际问题。总之,这是一本能够让读者受益无穷的趣味科普读物!
《写给孩子的趣味天文学》
本书是别莱利曼探讨“天”的学说, 介绍了有关天文的*基本的知识,解释了一些基本的天文现象。作者别莱利曼对读者司空见惯的现象赋予了新颖有趣的解读,即使是*简单的问题, 也会给读者*意外的答案。凡是阅读了本书的读者, 都会发现天文学的神奇魅力, 从而对天文学感兴趣。总之,这是一本能够让读者受益无穷的趣味科普读物!
《写给孩子的趣味物理学》
本书作者别莱利曼试图通过趣味性的讲述激活人们已知的物理学知识,并自觉灵活地把它们运用到生活中。别莱利曼在书中引用了小说家儒勒·凡尔纳、威尔斯、马克·吐温等人的科幻小说的片段,在说理方面起到了精彩绝伦的例证效果;并尝试了各种神奇的故事、 智力游戏题和出人意料的对比,避免枯燥的说教,将科学理论趣味十足地表现出来。总之,这是一本能够让读者受益无穷的趣味科普读物!
《写给孩子的趣味力学》
本书内容基本涵盖了力学的所有概念, 但有些概念并未具体分析, 只是一笔带过。因为本书*重要的目的是丰富读者的力学方面的知识,激发读者的学习兴趣, 从而让读者自己去探索书中未涉及的知识。总之,这是一本能够让读者受益无穷的趣味科普读物!
本书作者别莱利曼把代数紧紧贴近生活, 书中既有文学作品中摘录出来的数学题, 也有音乐、美术中的数学知识, 更有生活中人们会遇到的买卖等问题,内容新颖别致, 过程耐人寻味, 结果出人意料。在启发读者的阅读兴趣, 指导读者学习代数学知识的同时, 帮助读者解决生活中的实际问题。总之,这是一本能够让读者受益无穷的趣味科普读物!
《写给孩子的趣味几何学》
本书作者别莱利曼将几何学问题从校园搬到户外, 天马行空地做几何学问题,以通俗易懂、妙趣横生的语言对几何学的知识点进行了有趣而全面的讲解,并运用各种奇思妙想,向读者提出各种各样的几何学问题, 内容新颖别致, 过程耐人寻味, 结果出人意料。在启发读者的阅读兴趣, 指导读者学习几何知识的同时, 帮助读者解决生活中的实际问题。总之,这是一本能够让读者受益无穷的趣味科普读物!
《写给孩子的趣味天文学》
本书是别莱利曼探讨“天”的学说, 介绍了有关天文的*基本的知识,解释了一些基本的天文现象。作者别莱利曼对读者司空见惯的现象赋予了新颖有趣的解读,即使是*简单的问题, 也会给读者*意外的答案。凡是阅读了本书的读者, 都会发现天文学的神奇魅力, 从而对天文学感兴趣。总之,这是一本能够让读者受益无穷的趣味科普读物!
《写给孩子的趣味物理学》
本书作者别莱利曼试图通过趣味性的讲述激活人们已知的物理学知识,并自觉灵活地把它们运用到生活中。别莱利曼在书中引用了小说家儒勒·凡尔纳、威尔斯、马克·吐温等人的科幻小说的片段,在说理方面起到了精彩绝伦的例证效果;并尝试了各种神奇的故事、 智力游戏题和出人意料的对比,避免枯燥的说教,将科学理论趣味十足地表现出来。总之,这是一本能够让读者受益无穷的趣味科普读物!
《写给孩子的趣味力学》
本书内容基本涵盖了力学的所有概念, 但有些概念并未具体分析, 只是一笔带过。因为本书*重要的目的是丰富读者的力学方面的知识,激发读者的学习兴趣, 从而让读者自己去探索书中未涉及的知识。总之,这是一本能够让读者受益无穷的趣味科普读物!
比价列表价格走势
公众号、微信群

微信公众号

实时获取购书优惠