第1章 机器学习基础 001
1.1 机器学习及基本概念 002
1.1.1 什么是机器学习 002
1.1.2 机器学习中的一些基本概念 003
1.2 机器学习三要素 005
1.2.1 模型 005
1.2.2 策略 006
1.2.3 算法 009
1.3 机器学习分类 009
1.3.1 监督学习 010
1.3.2 无监督学习 013
1.3.3 半监督学习 013
1.3.4 强化学习 013
1.4 回归模型发展现状 014
1.4.1 线性回归 014
1.4.2 基于邻近信息的回归模型 018
1.4.3 鲁棒回归模型 020
第2章 基于正则化方法的回归模型 023
2.1 正则化方法 024
2.2 基于最小二乘估计的正则化方法 025
2.2.1 最小二乘估计 025
2.2.2 岭回归 026
2.2.3 Lasso估计 027
2.2.4 自适应Lasso 027
2.2.5 SCAD估计 028
2.2.6 弹性网络回归 029
2.3 鲁棒(稳健)正则化方法 029
第3章 自加权鲁棒正则化方法 033
3.1 自加权鲁棒方法 034
3.2 L0正则项 035
3.3 基于SELO惩罚项的自加权估计方法 037
3.3.1 自适应正则项 037
3.3.2 RSWSELO估计 038
3.3.3 理论性质及证明 039
3.4 实验验证与分析 044
3.4.1 模拟实验结果与分析 044
3.4.2 标准数据集上的实验 049
第4章 基于自变量相关的鲁棒回归模型 055
4.1 自变量相关性问题 056
4.2 基于Elastic Net罚的鲁棒估计方法 058
4.2.1 模型构建 058
4.2.2 理论性质分析及证明 059
4.2.3 求解算法 066
4.3 实验验证与分析 068
4.3.1 模拟实验结果与分析 068
4.3.2 真实数据集上的实验 080
第5章 基于因变量相关的Lasso回归模型 083
5.1 因变量相关性问题 084
5.2 Network Lasso估计及其性质 085
5.2.1 模型的构建 085
5.2.2 误差界估计 087
5.3 实验结果与分析 097
5.3.1 人工数据集上的实验 097
5.3.2 真实数据集上的实验 109
第6章 面向网络数据的Elastic Net回归模型 111
6.1 网络数据问题 112
6.2 面向网络数据的回归模型 112
6.3 Network Elastic Net 模型构建 114
6.3.1 模型构建 114
6.3.2 求解算法 115
6.4 实验结果与分析 117
6.4.1 人工数据集上的实验 117
6.4.2 实际数据分析 126
附录 131
参考文献 140
^ 收 起